Incorporating Flight Dynamics and Control Criteria in Aircraft Design Optimization
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The NASA Performance Adaptive Aeroelastic Wing (PAAW) project goals include significant reductions in fuel burn, emissions, and noise via efficient aeroelastic design and improvements in propulsion systems. As modern transport airplane designs become increasingly lightweight and incorporate high aspect-ratio wings, aeroservoelastic effects gain prominence in modeling and design considerations. As a result, the influence of the flight dynamics and controls on the optimal structural and aerodynamic design needs to be captured in the design process. There is an increasing interest in more integrated aircraft multidisciplinary design optimization (MDAO) processes that can bring flight control design into the early stage of an aircraft design cycle. So, in this thesis different flight dynamics modeling methodologies are presented that can be integrated within the MDAO framework. MDAO studies are conducted to maximize the controllability and observability of a UAV type aircraft using curvilinear SpaRibs and straight spars and ribs as the internal structural layout. The impulse residues and controllability Gramians are used as surrogates for the control objectives in the MDAO to maximize the controllability and observability of the aircraft. The optimal control designs are compared with those obtained using weight minimization as the design objective. It is found that using the aforementioned control objectives, the resulting aircraft design is more controllable and can be used to expand the flight envelope by up to 50% as compared to the weight minimized design.