Numerical generation of semisimple tortile categories coming from quantum groups

dc.contributor.authorBobtcheva, Ivelinaen
dc.contributor.committeechairQuinn, Frank S.en
dc.contributor.committeememberGreen, Edward L.en
dc.contributor.committeememberHaskell, Peter E.en
dc.contributor.committeememberLetzter, Gailen
dc.contributor.committeememberLinnell, Peter A.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T21:12:04Zen
dc.date.adate2008-06-06en
dc.date.available2014-03-14T21:12:04Zen
dc.date.issued1996-08-29en
dc.date.rdate2008-06-06en
dc.date.sdate2008-06-06en
dc.description.abstractIn this work we set up a general framework for exact computations of the associativity, commutativity and duality morphisms in a quite general class of tortile categories. The source of the categories we study is the work of Gelfand and Kazhdan, Examples of tensor categories, Invent.Mlath. 109 (l992), 595-617. They proved that, associated to the quantized enveloping algebra of any simple Lie group at a primitive prime root of unity, there is a semisimple monoidal braided category with finite number of simple objects. The prime p needs to be greater than the Coxeter number of the corresponding Lie algebra. We show that each of the Gelfand-Kazhdan categories has at least two subcategories which are tortile, and offer algorithms for computing the associativity, commutativity and duality morphisms in any of those categories. A careful choice of the bases of the simple objects and of the product of two such objects rnake the exact computations possible. The algorithms have been implemented in Mathemetica and tested for the categories A₂,p=5, A₃,p=7, A₄.p=7, C₂,p=7, and G₂,p=11. This work was supported by the Center for Mathematical Computations through NSF grant DMS-9207973.en
dc.description.degreePh. D.en
dc.format.extentvii, 191 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-06062008-151240en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-06062008-151240/en
dc.identifier.urihttp://hdl.handle.net/10919/37995en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V856_1996.B638.pdfen
dc.relation.isformatofOCLC# 35832131en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectquantum groupsen
dc.subjectrepresentationsen
dc.subject6j-symbolsen
dc.subjecttortile categoryen
dc.subject.lccLD5655.V856 1996.B638en
dc.titleNumerical generation of semisimple tortile categories coming from quantum groupsen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1996.B638.pdf
Size:
6.74 MB
Format:
Adobe Portable Document Format
Description: