Multimodal parameter spaces of a complex multi-channel neuron model

dc.contributor.authorWang, Y. Curtisen
dc.contributor.authorRudi, Johannen
dc.contributor.authorVelasco, Jamesen
dc.contributor.authorSinha, Nirviken
dc.contributor.authorIdumah, Gideonen
dc.contributor.authorPowers, Randall K.en
dc.contributor.authorHeckman, Charles J.en
dc.contributor.authorChardon, Matthieu K.en
dc.date.accessioned2022-12-09T13:52:54Zen
dc.date.available2022-12-09T13:52:54Zen
dc.date.issued2022-10-20en
dc.date.updated2022-12-08T19:49:23Zen
dc.description.abstractOne of the most common types of models that helps us to understand neuron behavior is based on the Hodgkin–Huxley ion channel formulation (HH model). A major challenge with inferring parameters in HH models is non-uniqueness: many different sets of ion channel parameter values produce similar outputs for the same input stimulus. Such phenomena result in an objective function that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness of local optimality poses challenges for parameter estimation with many algorithmic optimization techniques. HH models additionally have severe non-linearities resulting in further challenges for inferring parameters in an algorithmic fashion. To address these challenges with a tractable method in high-dimensional parameter spaces, we propose using a particular Markov chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring parameters in a Bayesian framework. The Bayesian approach is designed to be suitable for multimodal solutions to inverse problems. We introduce and demonstrate the method using a three-channel HH model. We then focus on the inference of nine parameters in an eight-channel HH model, which we analyze in detail. We explore how the MCMC algorithm can uncover complex relationships between inferred parameters using five injected current levels. The MCMC method provides as a result a nine-dimensional posterior distribution, which we analyze visually with solution maps or landscapes of the possible parameter sets. The visualized solution maps show new complex structures of the multimodal posteriors, and they allow for selection of locally and globally optimal value sets, and they visually expose parameter sensitivities and regions of higher model robustness. We envision these solution maps as enabling experimentalists to improve the design of future experiments, increase scientific productivity and improve on model structure and ideation when the MCMC algorithm is applied to experimental data.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.3389/fnsys.2022.999531en
dc.identifier.eissn1662-5137en
dc.identifier.issn1662-5137en
dc.identifier.orcidRudi, Johann [0000-0002-6563-9265]en
dc.identifier.otherPMC9632740en
dc.identifier.pmid36341477en
dc.identifier.urihttp://hdl.handle.net/10919/112831en
dc.identifier.volume16en
dc.language.isoenen
dc.publisherFrontiersen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/36341477en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectBayesian frameworken
dc.subjectHodgkin–Huxleyen
dc.subjectMarkov chain Monte Carloen
dc.subjectComputational neuroscienceen
dc.subjectModel fittingen
dc.subjectMultimodal posterioren
dc.subjectParameter estimationen
dc.titleMultimodal parameter spaces of a complex multi-channel neuron modelen
dc.title.serialFrontiers in Systems Neuroscienceen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherJournal Articleen
dcterms.dateAccepted2022-09-28en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MultimodalParameter.pdf
Size:
3.25 MB
Format:
Adobe Portable Document Format
Description:
Published version