Uncorrelated Lithium-Ion Hopping in a Dynamic Solvent-Anion Network
dc.contributor.author | Yu, Deyang | en |
dc.contributor.author | Troya, Diego | en |
dc.contributor.author | Korovich, Andrew G. | en |
dc.contributor.author | Bostwick, Joshua E. | en |
dc.contributor.author | Colby, Ralph H. | en |
dc.contributor.author | Madsen, Louis A. | en |
dc.date.accessioned | 2023-09-29T13:28:46Z | en |
dc.date.available | 2023-09-29T13:28:46Z | en |
dc.date.issued | 2023-03 | en |
dc.description.abstract | Lithium batteries rely crucially on fast charge and mass transport of Li+ in the electrolyte. For liquid and polymer electrolytes with added lithium salts, Li+ couples to the counter-anion to form ionic clusters that produce inefficient Li+ transport and lead to Li dendrite formation. Quantification of Li+ transport in glycerol-salt electrolytes via NMR experiments and MD simulations reveals a surprising Li+-hopping mechanism. The Li+ transference number, measured by ion-specific electrophoretic NMR, can reach 0.7, and Li+ diffusion does not correlate with nearby ion motions, even at high salt concentration. Glycerol's high density of hydroxyl groups increases ion dissociation and slows anion diffusion, while the close proximity of hydroxyls and anions lowers local energy barriers, facilitating Li+ hopping. This system represents a bridge between liquid and inorganic solid electrolytes, thus motivating new molecular designs for liquid and polymer electrolytes to enable the uncorrelated Li+-hopping transport needed for fast-charging and all-solid-state batteries. | en |
dc.description.notes | This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under award No. DE-EE0008860. This research was also supported in part by the National Science Foundation under Award DMR 1810194. The authors gratefully acknowledge Prof. Rui Qiao at Virginia Tech for beneficial discussions. | en |
dc.description.sponsorship | U.S. Department of Energy?s Office of Energy Efficiency and Renewable Energy (EERE) [DE-EE0008860]; National Science Foundation [DMR 1810194] | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1021/acsenergylett.3c00454 | en |
dc.identifier.issn | 2380-8195 | en |
dc.identifier.pmid | 37090169 | en |
dc.identifier.uri | http://hdl.handle.net/10919/116374 | en |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | frequency impedance spectroscopy | en |
dc.subject | physicochemical properties | en |
dc.subject | transference numbers | en |
dc.subject | concentrated electrolytes | en |
dc.subject | diffusion-coefficients | en |
dc.subject | irreversible-processes | en |
dc.subject | reciprocal relations | en |
dc.subject | liquid electrolytes | en |
dc.subject | self-diffusion | en |
dc.subject | transport | en |
dc.title | Uncorrelated Lithium-Ion Hopping in a Dynamic Solvent-Anion Network | en |
dc.title.serial | ACS Energy Letters | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- acsenergylett.3c00454.pdf
- Size:
- 3.36 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version