Trust-based Service Management of Internet of Things Systems and Its Applications

dc.contributor.authorGuo, Jiaen
dc.contributor.committeechairChen, Ing-Rayen
dc.contributor.committeememberRamakrishnan, Narenen
dc.contributor.committeememberTriantis, Konstantinos P.en
dc.contributor.committeememberTsai, Jeffrey J.P.en
dc.contributor.committeememberReddy, Chandan K.en
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2018-04-19T14:58:22Zen
dc.date.available2018-04-19T14:58:22Zen
dc.date.issued2018-04-18en
dc.description.abstractA future Internet of Things (IoT) system will consist of a huge quantity of heterogeneous IoT devices, each capable of providing services upon request. It is of utmost importance for an IoT device to know if another IoT service is trustworthy when requesting it to provide a service. In this dissertation research, we develop trust-based service management techniques applicable to distributed, centralized, and hybrid IoT environments. For distributed IoT systems, we develop a trust protocol called Adaptive IoT Trust. The novelty lies in the use of distributed collaborating filtering to select trust feedback from owners of IoT nodes sharing similar social interests. We develop a novel adaptive filtering technique to adjust trust protocol parameters dynamically to minimize trust estimation bias and maximize application performance. Our adaptive IoT trust protocol is scalable to large IoT systems in terms of storage and computational costs. We perform a comparative analysis of our adaptive IoT trust protocol against contemporary IoT trust protocols to demonstrate the effectiveness of our adaptive IoT trust protocol. For centralized or hybrid cloud-based IoT systems, we propose the notion of Trust as a Service (TaaS), allowing an IoT device to query the service trustworthiness of another IoT device and also report its service experiences to the cloud. TaaS preserves the notion that trust is subjective despite the fact that trust computation is performed by the cloud. We use social similarity for filtering recommendations and dynamic weighted sum to combine self-observations and recommendations to minimize trust bias and convergence time against opportunistic service and false recommendation attacks. For large-scale IoT cloud systems, we develop a scalable trust management protocol called IoT-TaaS to realize TaaS. For hybrid IoT systems, we develop a new 3-layer hierarchical cloud structure for integrated mobility, service, and trust management. This architecture supports scalability, reconfigurability, fault tolerance, and resiliency against cloud node failure and network disconnection. We develop a trust protocol called IoT-HiTrust leveraging this 3-layer hierarchical structure to realize TaaS. We validate our trust-based IoT service management techniques developed with real-world IoT applications, including smart city air pollution detection, augmented map travel assistance, and travel planning, and demonstrate that our trust-based IoT service management techniques outperform contemporary non-trusted and trust-based IoT service management solutions.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:14976en
dc.identifier.urihttp://hdl.handle.net/10919/82854en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectTrust managementen
dc.subjectInternet of Things (IoT) systemsen
dc.subjectmobile cloud computingen
dc.subjectservice managementen
dc.subjectsecurityen
dc.subjectscalabilityen
dc.subjectperformance analysisen
dc.titleTrust-based Service Management of Internet of Things Systems and Its Applicationsen
dc.typeDissertationen
thesis.degree.disciplineComputer Science and Applicationsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Guo_J_D_2018.pdf
Size:
3.86 MB
Format:
Adobe Portable Document Format