Infusing theory into deep learning for interpretable reactivity prediction
dc.contributor.author | Wang, Shih-Han | en |
dc.contributor.author | Pillai, Hemanth Somarajan | en |
dc.contributor.author | Wang, Siwen | en |
dc.contributor.author | Achenie, Luke E. K. | en |
dc.contributor.author | Xin, Hongliang | en |
dc.date.accessioned | 2021-11-29T18:53:22Z | en |
dc.date.available | 2021-11-29T18:53:22Z | en |
dc.date.issued | 2021 | en |
dc.description.abstract | Despite recent advances of data acquisition and algorithms development, machine learning (ML) faces tremendous challenges to being adopted in practical catalyst design, largely due to its limited generalizability and poor explainability. Herein, we develop a theory-infused neural network (TinNet) approach that integrates deep learning algorithms with the wellestablished d-band theory of chemisorption for reactivity prediction of transition-metal surfaces. With simple adsorbates (e.g., *OH, *O, and *N) at active site ensembles as representative descriptor species, we demonstrate that the TinNet is on par with purely data-driven ML methods in prediction performance while being inherently interpretable. Incorporation of scientific knowledge of physical interactions into learning from data sheds further light on the nature of chemical bonding and opens up new avenues for ML discovery of novel motifs with desired catalytic properties. | en |
dc.description.sponsorship | S.H.W., H.S.P., S.W., L.E.K.A. and H.X. acknowledge the partial financial support from the NSF CAREER program (CBET-1845531). | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/s41467-021-25639-8 | en |
dc.identifier.uri | http://hdl.handle.net/10919/106773 | en |
dc.identifier.volume | 12 | en |
dc.language.iso | en | en |
dc.publisher | Nature Research | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | Infusing theory into deep learning for interpretable reactivity prediction | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |