Mechanism and Function of TrkB.T1 Astrocyte Expression

TR Number

Date

2024-07-23

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Astrocytes are the most abundant glial cell type in the central nervous system (CNS). Most astrocytes are born during the early postnatal period in the rodent brain and mature alongside neurons, demonstrating remarkable morphological structural complexity, and attaining maturity in the second postnatal month. We have shown that astrocyte morphogenesis is regulated in part by brain-derived neurotrophic factor (BDNF) via signaling through the truncated tropomyosin receptor kinase B (TrkB) receptor. TrkB is the primary receptor for BDNF which is broadly expressed and released by neurons in developing and mature brain. TrkB has two predominant isoforms expressed in central nervous system (CNS), the full length TrkB (TrkB.FL) receptor and truncated TrkB (TrkB.T1) receptor. We recently demonstrated in the adult rodent cortex that TrkB.T1 is largely specific to astrocytes and over 90% of all Ntrk2 expression in astrocytes attributed to TrkB.T1. In contrast TrkB.FL is the predominant isoform expressed by neurons. It is not known how astrocytes and neurons regulate their specific TrkB isoform expression, although previous studies in bulk frontal cortical tissue from human postmortem samples indicate that DNA methylation level in promoter region and 3' UTR region of NTRK2 is negatively correlated with TrkB.T1 expression levels, but not with TrkB.FL expression. The mechanism of TrkB.T1 isoform-specific expression and the role of TrkB.T1 in astrocyte developmental process are unknown.

In this dissertation, we aimed to determine in the DNA methylation contributes to isoform specific expression of TrkB.T1. We thus profiled the 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in neurons, astrocytes and microglia utilizing nanopore sequencing. We identified robust differences in cell-type specific TrkB isoform expression is associated with significantly different 5mC and 5hmC patterns in neurons and astrocytes. Further, we investigated the role of TrkB.T1 in cortical astrocyte developmental processes and astrocyte function during early postnatal development (postnatal day (P) 8, P14, P28 and P60). RNA sequencing of TrkB.T1 deficient astrocytes isolated at these timepoints revealed aberrant gene expression in astrocyte maturation, while pathway analysis indicated disruptions in synapse organization, neurotransmitter transport and exocytotic processes. Subsequent functional secretory proteomics highlighted disruptions in metabolism and lipid regulation, particularly cholesterol transport, suggesting potential implications for synapse formation. We observed dysregulated spine density in the motor and somatosensory cortices from TrkB.T1-deficient astrocytes relative to control astrocytes. These findings suggest that TrkB.T1 deficiency adversely affects normal astrocyte development, which in turn affects neuronal synapse development. This study provides new insights into the role of BDNF/TrkB.T1 signaling in CNS development and lays the groundwork for evaluating astrocyte BDNF/TrkB.T1 signaling in neurological diseases.

Description

Keywords

Astrocyte, BDNF, TrkB.T1, 5mC, 5hmC, spine formation

Citation