Battling Bacteria: Characterizing the NOD-Like Receptor (NLR) Immune Response to Brucella abortus and Borrelia burgdorferi in Host-pathogen Interactions

TR Number

Date

2024-08-19

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The innate immune system is integral for defense against infectious diseases. Characterized by Pattern Recognition Receptors (PRRs), which sense conserved molecular motifs known as Pathogen-Associated Molecular Patterns (PAMPs), the innate immune system sets a system of checks and balances to regulate inflammation in host defense. In this dissertation, we focus on one class of PRRs known as the NOD-like Receptors (NLRs) in response to bacterial diseases. This class consists of pro-inflammatory receptors that form a multi-protein complex termed the inflammasome, as well as regulatory NLRs that modulate inflammation. Here, we investigated the roles of inflammasomes and negative regulatory NLRX1 in response to bacterial diseases. First, we studied brucellosis, a zoonotic, chronic disease often transmitted in unpasteurized dairy products from livestock. Using murine models and bone marrow-derived macrophages (BMDMs) challenged with Brucella abortus, we found that canonical inflammasomes in murine models were protective against brucellosis through the initiation of inflammatory cell death called pyroptosis. In contrast, the inhibition of inflammation by NLRX1 adversely led to increased pathology in the spleen and liver in infected murine models. Despite these contrasting results, Brucella genomic DNA was an effective PAMP for NLR recognition. These results suggest the importance of DNA recognition by NLRs during brucellosis. Second, we investigated NLRX1 regulation of Borrelia burgdorferi in Lyme arthritis using murine models. Characterized by persistent inflammation of the joints, Lyme arthritis is an enigmatic and difficult inflammatory condition to resolve. We found that NLRX1 was protective against arthritis. By characterizing changes in gene and protein expression of infected ankle joints, in addition to in vitro studies in BMDMs and fibroblasts, we found that NLRX1 enhances cell migration and regulates cell metabolism. Our results suggest that NLRX1 may metabolically shift macrophages toward a more favorable wound-healing environment for arthritis resolution. Ultimately, this work emphasizes the importance of balance in NLR signaling, which occurs within NLRs and from crosstalk with other inflammatory pathways. Further, NLR signaling is highly multifaceted and context-specific for the cell type and bacterial disease, showcasing the complexity of host-pathogen interactions when battling bacteria.

Description

Keywords

NLRX1, DNA, Brucellosis, Lyme Disease, Inflammasome

Citation