Polarization-Space Modulation With Reconfigurable Intelligent Surfaces, Robust Estimation, and Quaternion Neural Networks

dc.contributor.authorBuvarp, Anders M.en
dc.contributor.authorMili, Lamine M.en
dc.contributor.authorMishra, Kumar Vijayen
dc.contributor.authorZaghloul, Amir I.en
dc.date.accessioned2026-01-09T13:41:24Zen
dc.date.available2026-01-09T13:41:24Zen
dc.date.issued2025-06en
dc.description.abstractContemporary communications systems use large arrays in order to exploit the spatial domain requiring multiple radio-frequency (RF) chains leading to prohibitive cost and power consumption. Spatial degrees of freedom are also achieved by utilizing the polarization states of an electromagnetic (EM) wave. To this end, we propose a polarization-state modulation system based on carrier-wave reflections from a reconfigurable intelligent surface (RIS), where a sequence of data bits is mapped to polarization states. We consider a system with an upper millimeter-wave or low-terahertz (THz) RF source so that the channel model is line-of-sight-dominant. The data symbol constellation consists of 16 quaternion-valued symbols, of which two correspond to linear polarizations and the remaining 12 represent elliptical polarizations. Our channel models consist of both additive white Gaussian noise (AWGN) and impulse noise. We utilize the Weiszfeld algorithm and generalized M-estimators (GM-estimators) to handle the impulse noise and robustly decode the polarization-space modulated (PSM) signals. Furthermore, we train and evaluate quaternion neural networks (QNNs) for decoding PSM signals using seven different activation methods. Our numerical experiments indicate that the RIS is capable of directing signal power toward the location of the receiver. The bit error rate performance of our QNNs and robust decoders exceeds that of OFDM-BPSK.en
dc.description.versionPublished versionen
dc.format.extentPages 4038-4049en
dc.format.extent12 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1109/TAP.2025.3564504en
dc.identifier.eissn1558-2221en
dc.identifier.issn0018-926Xen
dc.identifier.issue6en
dc.identifier.orcidMili, Lamine [0000-0001-6134-3945]en
dc.identifier.urihttps://hdl.handle.net/10919/140705en
dc.identifier.volume73en
dc.language.isoenen
dc.publisherIEEEen
dc.rightsPublic Domain (U.S.)en
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/en
dc.subjectQuaternionsen
dc.subjectReconfigurable intelligent surfacesen
dc.subjectVectorsen
dc.subjectRadio frequencyen
dc.subjectPolarizationen
dc.subjectModulationen
dc.subjectSignal to noise ratioen
dc.subjectBit error rateen
dc.subjectTrainingen
dc.subjectMaximum likelihood decodingen
dc.subjectElectromagnetic (EM) signal information theoryen
dc.subjectequalizeren
dc.subjectpolarization-space modulationen
dc.subjectquaternion neural networks (QNNs)en
dc.subjectrobust estimationen
dc.titlePolarization-Space Modulation With Reconfigurable Intelligent Surfaces, Robust Estimation, and Quaternion Neural Networksen
dc.title.serialIEEE Transactions on Antennas and Propagationen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Electrical and Computer Engineeringen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Buvarp_Mili_Zaghloul_Mishra_Polarization-Space_Modulation_With_Reconfigurable_Intelligent_Surfaces_Robust_Estimation_and_Quaternion_Neural_Networks.pdf
Size:
4.88 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: