Effects of Reduced Muscle Glycogen on Sarcoplasmic Reticulum (SR), Muscle and Exercise Performance

TR Number

Date

2002-04-19

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Fatigue during exercise is associated with reduced muscle glycogen. However, evidence linking glycogen content to fatigue is lacking. In this study we examined whether reduced muscle glycogen content limited SR function or muscle performance. Two groups of female Sprague-Dawley rats were fasted for 24 hr and exercised for 90 min to reduce muscle glycogen; rats fasted after exercise formed the low glycogen (LG) group. Rats in the high glycogen (HG) group were allowed free access to food and a 5% sucrose solution. The LG group had 42% less muscle glycogen and 90% less glycogen associated with the sarcoplasmic reticulum (SR) than the HG group. Notably, time to exhaustion during a subsequent treadmill run (21 m/min at 10% grade) was markedly lower in the LG group (35 vs. 166.75 min). Despite less glycogen, the LG group had a higher SR Ca2+ uptake rate (45%) and Ca2+-stimulated ATPase activity (51%) possibly due to a 33% greater SERCA content. Surprisingly, in situ gastrocnemius initial twitch and tetanic forces were not different between groups although the rates of relaxation were higher in the LG group. The force responses to fatigue-inducing stimulus trains (20 Hz for 333 ms every 1 sec for 30 min) also were similar for both groups as were twitch and tetanic forces in the fatigued state. These results suggest that despite reduction in exercise performance, reduced muscle glycogen does not limit muscle performance or SR function.

Description

Keywords

Fatigue, calcium, SERCA, metabolism

Citation