Similarity solutions of stochastic nonlinear parabolic equations

dc.contributor.authorSockell, Michael Ellioten
dc.contributor.committeechairBevan, David R.en
dc.contributor.committeememberDavis, William A.en
dc.contributor.committeememberKohler, Werneren
dc.contributor.committeememberde Wolf, David A.en
dc.contributor.committeememberNayfeh, Alien
dc.contributor.departmentElectrical Engineeringen
dc.date.accessioned2014-08-13T14:38:44Zen
dc.date.available2014-08-13T14:38:44Zen
dc.date.issued1987en
dc.description.abstractA novel statistical technique introduced by Besieris is used to study solutions of the nonlinear stochastic complex parabolic equation in the presence of two profiles. Specifically, the randomly modulated linear potential and the randomly perturbed quadratic focusing medium. In the former, a class of solutions is shown to admit an exact statistical description in terms of the moments of the wave function. In the latter, all even-order moments are computed exactly, whereas the odd-order moments are solved asymptotically. Lastly, it is shown that this statistical technique is isomorphic to mappings of nonconstant coefficient partial differential equations to constant coefficient equations. A generalization of this mapping and its inherent restrictions are discussed.en
dc.description.adminincomplete_metadataen
dc.description.degreePh. D.en
dc.format.extentv, 97 leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/49898en
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 17685627en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1987.S654en
dc.subject.lcshStochastic integral equationsen
dc.subject.lcshStochastic processesen
dc.titleSimilarity solutions of stochastic nonlinear parabolic equationsen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1987.S654.pdf
Size:
2.38 MB
Format:
Adobe Portable Document Format
Description: