Single-Stage Wireless Power Transfer System with Single-Switch Secondary Side Modulation

TR Number

Date

2023-04-25

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Due to the loose coupling nature and separated primary/secondary side, achieving tight load regulation or implementing closed-loop control of output voltage/current is nontrivial in a wireless power transfer (WPT) system. Previously presented methods for regulating or controlling the output of a WPT system include incorporating either post-regulator stage, wireless communication from secondary to primary side, primary side sensing and modulation scheme, or dual active bridge type of topology. However, all existing methods have limitations and disadvantages in terms of increased size/cost, control complexity, or reliability in electrically noisy environments. This dissertation proposes a single switch control and regulation mechanism based on the secondary side of the WPT system. Specifically, the duty cycle of the secondary side synchronous rectifier (SR) switch is modulated to control the output voltage or current. By modulating the SR duty cycle, output of the WPT system can be controlled without requiring additional regulator stages/power devices, a primary side sensing mechanism, or secondary to primary communication. The proposed control method lowers cost and simplifies the design of WPT systems while improving reliability in noisy environments. The proposed control and modulation mechanism maintains zero voltage switching of all power semiconductor switches so efficiency of the WPT system would not be compromised by implementing the proposed control scheme. The proposed secondary side SR based control method can be applied to dc-dc WPT systems to control output voltage or current, or it could be used in a dc-ac WPT system to generate and regulate ac output if combined with an unfolding stage. When used in dc-ac WPT systems, the bulky output filter stage usually required in conventional dc-ac inverters is eliminated. The proposed control scheme is evaluated with computer simulation as well as hardware implementation and testing.

Description

Keywords

Wireless Power Transfer, synchronous rectification, Inverter, dc-ac

Citation