Experimental and Numerical Investigations of the Effects of Incident Turbulence on the Flow Over a Surface-Mounted Prism
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The issue of the effects of free stream turbulence on the flow field over a surface-mounted prism is examined through experimental and numerical investigations. In the experimental studies, particle image velocimetry measurements are conducted in the ESM water tunnel at Reynolds number of
In the numerical studies, large eddy simulations of the flow over a surface-mounted prism under two inflow conditions, namely, smooth inflow and isotropic homogeneous turbulence inflow, are performed. The use of a fifth-order scheme (CUD-II-5), which is a member of a family of Compact Upwind Difference schemes, in large eddy simulations of this flow is assessed. The performance of this scheme is validated by comparing the rate of temporal decay of isotropic turbulence with available experimental measurements for grid-generated turbulence. The results show that the spectra are sensitive to the method of flux vector splitting needed for the implementation of the upwind scheme. With van Leer splitting, the CUD-II-5 scheme is found to be too dissipative. On the other hand, using the Lax-Friedrichs vector splitting yields good agreement with experiments by controlling the level of artificial dissipation. This led us to recommend a new procedure, we denote by C6CUD5 scheme, that combines a compact sixth-order scheme with the CUD-II-5 scheme for large eddy simulation of complex flows. The simulation results, including flow patterns, pressure fields and turbulence statistics show that the CUD-II-5 scheme, with Lax-Friedricks flux vector splitting, provides high resolution of local flow structures. The results present new physical aspects of the flow topology over surface-mounted prisms. The effects of the incident homogeneous turbulence on the size of the separation region and suction pressures are determined by pointing out differences in the flow topologies between the two incident flow cases.