Design, Modeling and Tests of Electromagnetic Energy Harvesting Systems for Railway Track and Car Applications

TR Number

Date

2020-01-22

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This study proposes various methods to harvest the mechanical energy present in railcar suspensions and railroad tracks to generate electricity that is suitable for onboard or trackside electronics, using electromagnetic generators. Compact electromagnetic energy harvesters that can be installed onboard railcars or wayside on railroad tracks are designed, fabricated, and tested. The designs integrate a mechanical motion rectifier (MMR) with embedded one-way clutches in the bevel gears in order to convert the bi-directional mechanical energy that commonly exists in the form of vibrations into a unidirectional rotation of the generator. The ball screw mechanism is configured such that it has reduced backlash and thus can more efficiently harvest energy from low-amplitude vibrations. Two prototype harvesters are fabricated and tested extensively in the laboratory using a suspension dynamometer and in the field onboard a railcar and on a test track. A power management system with an energy storage circuit has also been developed for this onboard harvester. The laboratory evaluation indicate that the harvesters are capable of harvesting power with sufficient current and voltage for successfully powering light electronics or charging a low demand battery pack. The harvested power varies widely from a few to tens of Watts, depending on the resistive load across the harvester and the amplitude and frequency of the mechanical motion. The laboratory test results are verified through field testing. One harvester is tested onboard a freight railcar, placing it across the wedge suspension, to use the small amount of relative displacement at the wedge suspension to harvest energy. A second harvester is placed on a test track to use the vertical motion that occurs due to passing wheels for wayside energy harvesting. Both onboard and wayside tests confirm the laboratory test results in terms of the success of the design concept in providing low-power electrical power. The harvester design is further integrated into a conventional railroad tie for ease of field installation and for improving the efficiency of harvesting the mechanical energy at the rail. The integrated design, referred to as the "smart tie," not only protects the energy harvester, the wiring harness, and supporting electronics from the maintenance-of-the-way equipment, but also positions the harvester in a mechanically advantageous position that can maximize the track-induced motion, and hence the harvested power. Although for testing purposes, the smart tie uses a modified composite tie, it can be integrated into other track tie arrangements that are used for revenue service track, including concrete and wooden ties.
A prototype smart tie is fabricated for laboratory testing, and the results nearly surpass the results obtained earlier from the wayside harvester. The smart tie is currently being considered for revenue service field testing over an extended length of time, potentially at a railroad mega site or similarly suitable location.

Description

Keywords

Energy harvesting, rail track, smart rail tie, railcar suspension, electromagnetic damper, power management system

Citation