Mathematical analysis of robustness of oscillations in models of the mammalian circadian clock
dc.contributor.author | Yao, Xiangyu | en |
dc.contributor.author | Heidebrecht, Benjamin L. | en |
dc.contributor.author | Chen, Jing | en |
dc.contributor.author | Tyson, John J. | en |
dc.date.accessioned | 2024-02-13T13:50:06Z | en |
dc.date.available | 2024-02-13T13:50:06Z | en |
dc.date.issued | 2022-03-18 | en |
dc.description.abstract | Circadian rhythms in a wide range of organisms are mediated by molecular mechanisms based on transcription-translation feedback. In this paper, we use bifurcation theory to explore mathematical models of genetic oscillators, based on Kim & Forger’s interpretation of the circadian clock in mammals. At the core of their models is a negative feedback loop whereby PER proteins (PER1 and PER2) bind to and inhibit their transcriptional activator, BMAL1. For oscillations to occur, the dissociation constant of the PER:BMAL1 complex, Kbd, must be ≤ 0.04 nM, which is orders of magnitude smaller than a reasonable expectation of 1–10 nM for this protein complex. We relax this constraint by two modifications to Kim & Forger’s ‘single negative feedback’ (SNF) model: first, by introducing a multistep reaction chain for posttranscriptional modifications of Per mRNA and posttranslational phosphorylations of PER, and second, by replacing the first-order rate law for degradation of PER in the nucleus by a Michaelis-Menten rate law. These modifications increase the maximum allowable Kbd to ~2 nM. In a third modification, we consider an alternative rate law for gene transcription to resolve an unrealistically large rate of Per2 transcription at very low concentrations of BMAL1. Additionally, we studied extensions of the SNF model to include a second negative feedback loop (involving REV-ERB) and a supplementary positive feedback loop (involving ROR). Contrary to Kim & Forger’s observations of these extended models, we find that, with our modifications, the supplementary positive feedback loop makes the oscillations more robust than observed in the models with one or two negative feedback loops. However, all three models are similarly robust when accounting for circadian rhythms (~24 h period) with Kbd ≥ 1 nM. Our results provide testable predictions for future experimental studies. | en |
dc.description.version | Published version | en |
dc.format.extent | 23 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | ARTN e1008340 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1371/journal.pcbi.1008340 | en |
dc.identifier.eissn | 1553-7358 | en |
dc.identifier.issn | 1553-734X | en |
dc.identifier.issue | 3 | en |
dc.identifier.orcid | Chen, Jing [0000-0001-6321-0505] | en |
dc.identifier.other | PCOMPBIOL-D-20-01637 (PII) | en |
dc.identifier.pmid | 35302984 | en |
dc.identifier.uri | https://hdl.handle.net/10919/117968 | en |
dc.identifier.volume | 18 | en |
dc.language.iso | en | en |
dc.publisher | Public Library of Science | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/35302984 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject.mesh | Animals | en |
dc.subject.mesh | Mammals | en |
dc.subject.mesh | Transcription Factors | en |
dc.subject.mesh | RNA, Messenger | en |
dc.subject.mesh | Circadian Rhythm | en |
dc.subject.mesh | CLOCK Proteins | en |
dc.subject.mesh | ARNTL Transcription Factors | en |
dc.subject.mesh | Circadian Clocks | en |
dc.title | Mathematical analysis of robustness of oscillations in models of the mammalian circadian clock | en |
dc.title.serial | Plos Computational Biology | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
dcterms.dateAccepted | 2022-02-25 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/Biological Sciences | en |
pubs.organisational-group | /Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Mathematical analysis of robustness of oscillations in models of the mammalian circadian clock.pdf
- Size:
- 2.93 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1