Browsing by Author "Artemov, Gleb N."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- The Development of Cytogenetic Maps for Malaria MosquitoesArtemov, Gleb N.; Stegniy, Vladimir N.; Sharakhova, Maria V.; Sharakhov, Igor V. (MDPI, 2018-09-17)Anopheline mosquitoes are important vectors of human malaria. Next-generation sequencing opens new opportunities for studies of mosquito genomes to uncover the genetic basis of a Plasmodium transmission. Physical mapping of genome sequences to polytene chromosomes significantly improves reference assemblies. High-resolution cytogenetic maps are essential for anchoring genome sequences to chromosomes as well as for studying breakpoints of chromosome rearrangements and chromatin protein localization. Here we describe a detailed pipeline for the development of high-resolution cytogenetic maps using polytene chromosomes of malaria mosquitoes. We apply this workflow to the refinement of the cytogenetic map developed for Anopheles beklemishevi.
- New Cytogenetic Photomap and Molecular Diagnostics for the Cryptic Species of the Malaria Mosquitoes Anopheles messeae and Anopheles daciae from EurasiaArtemov, Gleb N.; Fedorova, Valentina S.; Karagodin, Dmitriy A.; Brusentsov, Ilya I.; Baricheva, Elina M.; Sharakhov, Igor V.; Gordeev, Mikhail I.; Sharakhova, Maria V. (MDPI, 2021-09-17)The Eurasian malaria vector Anopheles messeae is a widely spread and genetically diverse species. Five widespread polymorphic chromosomal inversions were found in natural populations of this mosquito. A cryptic species, Anopheles daciae, was differentiated from An. messeae by the presence of several nucleotide substitutions in the Internal Transcribed Spacer 2 (ITS2) region of ribosomal DNA. However, because of the absence of a high-quality reference cytogenetic map, the inversion polymorphisms in An. daciae and An. messeae remain poorly understood. Moreover, a recently determined heterogeneity in ITS2 in An. daciae questioned the accuracy of the previously used Restriction Fragment Length Polymorphism (RFLP) assay for species diagnostics. In this study, a standard-universal cytogenetic map was constructed based on orcein stained images of chromosomes from salivary glands for population studies of the chromosomal inversions that can be used for both An. messeae and An. daciae. In addition, a new ITS2-RFLP approach for species diagnostics was developed. Both methods were applied to characterize inversion polymorphism in populations of An. messeae and An. daciae from a single location in Western Siberia in Russia. The analysis demonstrates that cryptic species are remarkably different in their frequencies of chromosomal inversion variants. Our study supports previous observations that An. messeae has higher inversion polymorphism in all autosomes than the cryptic species An. daciae.
- Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genomeArtemov, Gleb N.; Bondarenko, Semen M.; Naumenko, Anastasia N.; Stegniy, Vladimir N.; Sharakhova, Maria V.; Sharakhov, Igor V. (2018-04-23)Background Malaria mosquitoes have had a remarkable stability in the number of chromosomes in their karyotype (2n = 6) during 100 million years of evolution. Moreover, autosomal arms were assumed to maintain their integrity even if their associations with each other changed via whole-arm translocations. Here we use high-coverage comparative physical genome mapping of three Anopheles species to test the extent of evolutionary conservation of chromosomal arms in malaria mosquitoes. Results In this study, we developed a physical genome map for Anopheles atroparvus, one of the dominant malaria vectors in Europe. Using fluorescence in situ hybridization (FISH) of DNA probes with the ovarian nurse cell polytene chromosomes and synteny comparison, we anchored 56 genomic scaffolds to the An. atroparvus chromosomes. The obtained physical map represents 89.6% of the An. atroparvus genome. This genome has the second highest mapping coverage among Anophelinae assemblies after An. albimanus, which has 98.2% of the genome assigned to its chromosomes. A comparison of the An. atroparvus, An. albimanus, and An. gambiae genomes identified partial-arm translocations between the autosomal arms that break down the integrity of chromosome elements in evolution affecting the structure of the genetic material in the pericentromeric regions. Unlike An. atroparvus and An. albimanus, all chromosome elements of An. gambiae are fully syntenic with chromosome elements of the putative ancestral Anopheles karyotype. We also detected nonrandom distribution of large conserved synteny blocks and confirmed a higher rate of inversion fixation in the X chromosome compared with autosomes. Conclusions Our study demonstrates the power of physical mapping for understanding the genome evolution in malaria mosquitoes. The results indicate that syntenic relationships among chromosome elements of Anopheles species have not been fully preserved because of multiple partial-arm translocations.
- Phylogenomics revealed migration routes and adaptive radiation timing of Holarctic malaria mosquito species of the Maculipennis GroupYurchenko, Andrey A.; Naumenko, Anastasia N.; Artemov, Gleb N.; Karagodin, Dmitry A.; Hodge, James M.; Velichevskaya, Alena I.; Kokhanenko, Alina A.; Bondarenko, Semen M.; Abai, Mohammad R.; Kamali, Maryam; Gordeev, Mikhail I.; Moskaev, Anton V.; Caputo, Beniamino; Aghayan, Sargis A.; Baricheva, Elina M.; Stegniy, Vladimir N.; Sharakhova, Maria V.; Sharakhov, Igor V. (2023-04-10)Background Phylogenetic analyses of closely related species of mosquitoes are important for better understanding the evolution of traits contributing to transmission of vector-borne diseases. Six out of 41 dominant malaria vectors of the genus Anopheles in the world belong to the Maculipennis Group, which is subdivided into two Nearctic subgroups (Freeborni and Quadrimaculatus) and one Palearctic (Maculipennis) subgroup. Although previous studies considered the Nearctic subgroups as ancestral, details about their relationship with the Palearctic subgroup, and their migration times and routes from North America to Eurasia remain controversial. The Palearctic species An. beklemishevi is currently included in the Nearctic Quadrimaculatus subgroup adding to the uncertainties in mosquito systematics. Results To reconstruct historic relationships in the Maculipennis Group, we conducted a phylogenomic analysis of 11 Palearctic and 2 Nearctic species based on sequences of 1271 orthologous genes. The analysis indicated that the Palearctic species An. beklemishevi clusters together with other Eurasian species and represents a basal lineage among them. Also, An. beklemishevi is related more closely to An. freeborni, which inhabits the Western United States, rather than to An. quadrimaculatus, a species from the Eastern United States. The time-calibrated tree suggests a migration of mosquitoes in the Maculipennis Group from North America to Eurasia about 20–25 million years ago through the Bering Land Bridge. A Hybridcheck analysis demonstrated highly significant signatures of introgression events between allopatric species An. labranchiae and An. beklemishevi. The analysis also identified ancestral introgression events between An. sacharovi and its Nearctic relative An. freeborni despite their current geographic isolation. The reconstructed phylogeny suggests that vector competence and the ability to enter complete diapause during winter evolved independently in different lineages of the Maculipennis Group. Conclusions Our phylogenomic analyses reveal migration routes and adaptive radiation timing of Holarctic malaria vectors and strongly support the inclusion of An. beklemishevi into the Maculipennis Subgroup. Detailed knowledge of the evolutionary history of the Maculipennis Subgroup provides a framework for examining the genomic changes related to ecological adaptation and susceptibility to human pathogens. These genomic variations may inform researchers about similar changes in the future providing insights into the patterns of disease transmission in Eurasia.
- The Physical Genome Mapping of Anopheles albimanus Corrected Scaffold Misassemblies and Identified Interarm Rearrangements in Genus AnophelesArtemov, Gleb N.; Peery, Ashley N.; Jiang, Xiaofang; Tu, Zhijian Jake; Stegniy, Vladimir N.; Sharakhova, Maria V.; Sharakhov, Igor V. (Genetics Society of America, 2017-01-01)The genome of the Neotropical malaria vector Anopheles albimanus was sequenced as part of the 16 Anopheles Genomes Project published in 2015. The draft assembly of this species consisted of 204 scaffolds with an N50 scaffold size of 18.1 Mb and a total assembly size of 170.5 Mb. It was among the smallest genomes with the longest scaffolds in the 16 Anopheles species cluster, making An. albimanus the logical choice for anchoring the genome assembly to chromosomes. In this study, we developed a high-resolution cytogenetic photomap with completely straightened polytene chromosomes from the salivary glands of the mosquito larvae. Based on this photomap, we constructed a chromosome-based genome assembly using fluorescent in situ hybridization of PCR-amplified DNA probes. Our physical mapping, assisted by an ortholog-based bioinformatics approach, identified and corrected nine misassemblies in five large genomic scaffolds.Misassemblies mostly occurred in junctions between contigs. Our comparative analysis of scaffolds with the An. gambiae genome detected multiple genetic exchanges between pericentromeric regions of chromosomal arms caused by partial-arm translocations. The finalmap consists of 40 ordered genomic scaffolds and corrected fragments ofmisassembled scaffolds. The An. albimanus physical map comprises 98.2% of the total genome assembly and represents the most complete genome map among mosquito species. This study demonstrates that physical mapping is a powerful tool for correcting errors in draft genome assemblies and for creating chromosome-anchored reference genomes.
- Spatial Organization of Chromosomes in Malaria MosquitoesSharakhov, Igor V.; Artemov, Gleb N.; Bondarenko, Semen M.; Shirokova, V. V.; Stegniy, Vladimir N. (Russian Academy Of Sciences, 2016)Malaria mosquitoes are vectors of dangerous human diseases and a model system for investigations of chromosome evolution, heterochromatin organization, and nuclei architecture in the cells of the reproductive system. Investigations of nurse cells chromosomes are aimed at understanding of mechanisms that cause interspecies differences in the nuclear spatial organization in these cells. One of the most important tasks of this research is the undestanding of molecular organization of the chromosome regions that are attached to the nuclear envelope. In the present review, the recent achievements in this field of research are described and unsolved problems of the spatial chromosome organization are identified.
- A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemisheviArtemov, Gleb N.; Gordeev, Mikhail I.; Kokhanenko, Alina A.; Moskaev, Anton V.; Velichevskaya, Alena I.; Stegniy, Vladimir N.; Sharakhov, Igor V.; Sharakhova, Maria V. (2018-03-27)Background Anopheles beklemishevi is a member of the Maculipennis group of malaria mosquitoes that has the most northern distribution among other members of the group. Although a cytogenetic map for the larval salivary gland chromosomes of this species has been developed, a high-quality standard cytogenetic photomap that enables genomics and population genetics studies of this mosquito at the adult stage is still lacking. Methods In this study, a cytogenetic map for the polytene chromosomes of An. beklemishevi from ovarian nurse cells was developed using high-resolution digital imaging from field collected mosquitoes. PCR-amplified DNA probes for fluorescence in situ hybridization (FISH) were designed based on the genome of An. atroparvus. The DNA probe obtained by microdissection procedures from the breakpoint region was labelled in a DOP-PCR reaction. Population analysis was performed on 371 specimens collected in 18 locations. Results We report the development of a high-quality standard photomap for the polytene chromosomes from ovarian nurse cells of An. beklemishevi. To confirm the suitability of the map for physical mapping, several PCR-amplified probes were mapped to the chromosomes of An. beklemishevi using FISH. In addition, we identified and mapped DNA probes to flanking regions of the breakpoints of two inversions on chromosome X of this species. Inversion polymorphism was determined in 13 geographically distant populations of An. beklemishevi. Four polymorphic inversions were detected. The positions of common chromosomal inversions were indicated on the map. Conclusions The study constructed a standard photomap for ovarian nurse cell chromosomes of An. beklemishevi and tested its suitability for physical genome mapping and population studies. Cytogenetic analysis determined inversion polymorphism in natural populations of An. beklemishevi related to this species’ adaptation.
- A standard photomap of the ovarian nurse cell chromosomes for the dominant malaria vector in Europe and Middle East Anopheles sacharoviArtemov, Gleb N.; Velichevskaya, Alena I.; Bondarenko, Semen M.; Karagyan, Gayane H.; Aghayan, Sargis A.; Arakelyan, Marine S.; Stegniy, Vladimir N.; Sharakhov, Igor V.; Sharakhova, Maria V. (2018-07-30)Background Anopheles sacharovi is a dominant malaria vector species in South Europe and the Middle East which has a highly plastic behaviour at both adult and larval stages. Such plasticity has prevented this species from eradication by several anti-vector campaigns. The development of new genome-based strategies for vector control will benefit from genome sequencing and physical chromosome mapping of this mosquito. Although a cytogenetic photomap for chromosomes from salivary glands of An. sacharovi has been developed, no cytogenetic map suitable for physical genome mapping is available. Methods Mosquitoes for this study were collected at adult stage in animal shelters in Armenia. Polytene chromosome preparations were prepared from ovarian nurse cells. Fluorescent in situ hybridization (FISH) was performed using PCR amplified probes. Results This study constructed a high-quality standard photomap for polytene chromosomes from ovarian nurse cells of An. sacharovi. Following the previous nomenclature, chromosomes were sub-divided into 39 numbered and 119 lettered sub-divisions. Chromosomal landmarks for the chromosome recognition were described. Using FISH, 4 PCR-amplified genic probes were mapped to the chromosomes. The positions of the probes demonstrated gene order reshuffling between An. sacharovi and Anopheles atroparvus which has not been seen cytologically. In addition, this study described specific chromosomal landmarks that can be used for the cytotaxonomic diagnostics of An. sacharovi based on the banding pattern of its polytene chromosomes. Conclusions This study constructed a high-quality standard photomap for ovarian nurse cell chromosomes of An. sacharovi and validated its utility for physical genome mapping. Based on the map, cytotaxonomic features for identification of An. sacharovi have been described. The cytogenetic map constructed in this study will assist in creating a chromosome-based genome assembly for this mosquito and in developing cytotaxonomic tools for identification of other species from the Maculipennis group.
- Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvusBondarenko, Semen M.; Artemov, Gleb N.; Sharakhov, Igor V.; Stegniy, Vladimir N. (PLOS, 2017-02-03)Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO--a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells.
- Two Nested Inversions in the X Chromosome Differentiate the Dominant Malaria Vectors in Europe, Anopheles atroparvus and Anopheles messeaeSoboleva, Evgenia S.; Kirilenko, Kirill M.; Fedorova, Valentina S.; Kokhanenko, Alina A.; Artemov, Gleb N.; Sharakhov, Igor V. (MDPI, 2024-04-26)The Maculipennis subgroup of malaria mosquitoes includes both dominant malaria vectors and non-vectors in Eurasia. Understanding the genetic factors, particularly chromosomal inversions, that differentiate Anopheles species can provide valuable insights for vector control strategies. Although autosomal inversions between the species in this subgroup have been characterized based on the chromosomal banding patterns, the number and positions of rearrangements in the X chromosome remain unclear due to the divergent banding patterns. Here, we identified two large X chromosomal inversions, approximately 13 Mb and 10 Mb in size, using fluorescence in situ hybridization. The inversion breakpoint regions were mapped by hybridizing 53 gene markers with polytene chromosomes of An. messeae. The DNA probes were designed based on gene sequences from the annotated An. atroparvus genome. The two nested inversions resulted in five syntenic blocks. Only two small syntenic blocks, which encompass 181 annotated genes in the An. atroparvus genome, changed their position and orientation in the X chromosome. The analysis of the An. atroparvus genome revealed an enrichment of gene ontology terms associated with immune system and mating behavior in the rearranged syntenic blocks. Additionally, the enrichment of DNA transposons was found in sequences homologous to three of the four breakpoint regions. This study demonstrates the successful application of the physical genome mapping approach to identify rearrangements that differentiate species in insects with polytene chromosomes.