Browsing by Author "Bassaganya-Riera, Josep"
Now showing 1 - 20 of 63
Results Per Page
Sort Options
- Abscisic acid ameliorates glucose tolerance and obesity-induced inflammationGuri, Amir Joseph (Virginia Tech, 2007-10-19)Obesity is a disease characterized by chronic inflammation and the progressive loss in systemic insulin sensitivity. One of the more effective medications in the treatment of insulin resistance have been the thiazolidinediones (TZDs), which act through the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma ). Due to the many side-effects of TZDs, our laboratory sought out a natural phytochemical, abscisic acid (ABA), with chemical similarities to TZDs. Our first study demonstrated that ABA activates PPARgamma in vitro and significantly ameliorates white adipose tissue (WAT) inflammation and glucose tolerance in db/db mice. We next further examined the effect of ABA on the phenotype of adipose tissue macrophages (ATMs). In doing so, we discovered two separate ATM populations which differed in their expression of the macrophage surface glycoprotein and maturation marker F4/80 (F4/80hi vs F4/80lo). Dietary ABA-supplementation significantly reduced F4/80hiCCR2+ ATMs and had no effect on the F4/80lo population. Utilizing a tissue-specific knockout generated through Cre-lox recombination, we were able to determine that this effect was dependent on PPARgamma in immune cells. To further characterize the differences between the ATM subsets that were affected by ABA, we performed a multi-organ assessment (i.e., WAT, skeletal muscle and liver) of the effect of diet-induced obesity on the phenotype of infiltrating macrophages and T cells into metabolic organs. Based on our new data, we formulated a model by which F4/80hiCCR2hi ATMs infiltrate WAT and ultimately induce a CD11c+ pro-inflammatory phenotype in the resident F4/80loCCR2lo subset. Ultimately, our findings provide evidence that ABA has potential as an alternative preventive intervention, expound the role of PPARgamma in immune cells and, in general, expand our knowledge concerning the immunopathogenesis of obesity-induced insulin resistance.
- Abscisic Acid: A Novel Nutraceutical for Glycemic ControlZocchi, Elena; Hontecillas, Raquel; Leber, Andrew; Einerhand, Alexandra; Carbo, Adria; Bruzzone, Santina; Tubau-Juni, Nuria; Philipson, Noah; Zoccoli-Rodriguez, Victoria; Sturla, Laura; Bassaganya-Riera, Josep (Frontiers, 2017-06-13)Abscisic acid is naturally present in fruits and vegetables, and it plays an important role in managing glucose homeostasis in humans. According to the latest U.S. dietary survey, about 92% of the population might have a deficient intake of ABA due to their deficient intake of fruits and vegetables. This review summarizes the in vitro, preclinical, mechanistic, and human translational findings obtained over the past 15 years in the study of the role of ABA in glycemic control. In 2007, dietary ABA was first reported to ameliorate glucose tolerance and obesity-related inflammation in mice. The most recent findings regarding the topic of ABA and its proposed receptor lanthionine synthetase C-like 2 in glycemic control and their interplay with insulin and glucagon-like peptide-1 suggest a major role for ABA in the physiological response to a glucose load in humans. Moreover, emerging evidence suggests that the ABA response might be dysfunctional in diabetic subjects. Follow on intervention studies in healthy individuals show that low-dose dietary ABA administration exerts a beneficial effect on the glycemia and insulinemia profiles after oral glucose load. These recent findings showing benefits in humans, together with extensive efficacy data in mouse models of diabetes and inflammatory disease, suggest the need for reference ABA values and its possible exploitation of the glycemia-lowering effects of ABA for preventative purposes. Larger clinical studies on healthy, prediabetic, and diabetic subjects are needed to determine whether addressing the widespread dietary ABA deficiency improves glucose control in humans.
- The anti-diabetic mechanisms by isoflavone genisteinFu, Zhuo (Virginia Tech, 2011-05-10)Diabetes is growing public health problem in the United States. Both in Type 1 and Type 2 diabetes, the deterioration of glycemic control over time is largely due to insulin secretory dysfunction and significant loss of functional β-cells. As such, the search for novel agents that promote β-cell survival and preserve functional β-cell mass are one of the essential strategies to prevent and treat the onset of diabetes. Genistein, a flavonoid in legumes and some herbal medicines, has various biological actions. It was recently shown that dietary intake of foods containing genistein improves diabetes in both experimental animals and humans. However, the potential anti-diabetic mechanisms of genistein are unclear. In the present study, we first investigated the effect of genistein on β-cell insulin secretion and proliferation and cellular signaling related to these effects in vitro and in vivo. We then determined its anti-diabetic potential in insulin-deficient and obese diabetic mouse models. The results in our study showed that exposure of clonal insulin secreting (INS1E) cells or isolated pancreatic islets to genistein at physiologically relevant concentrations (1-10 μM) enhanced glucose-stimulated insulin secretion (GSIS), whereas insulin content was not altered, suggesting that genistein-enhanced GSIS is not due to a modulation of insulin synthesis. This genistein's effect is protein tyrosine kinase- and KATP channel-independent. In addition, genistein had no effect on glucose transporter-2 expression or cellular ATP production, but similarly augmented pyruvate-stimulated insulin secretion in INS1E cells, indicating that genistein improvement of insulin secretion in β-cells is not related to an alternation in glucose uptake or the glycolytic pathway. Further, genistein (1-10 μM) induced both INS1 and human islet β-cell proliferation following 24 h of incubation, with 5 μM genistein inducing a maximal 27% increase. The effect of genistein on β-cell proliferation was neither dependent on estrogen receptors, nor shared by 17β-estradiol or a host of structurally related flavonoid compounds. Pharmacological or molecular intervention of PKA or ERK1/2 completely abolished genistein-stimulated β-cell proliferation, suggesting that both molecules are essential for genistein action. Consistent with its effect on cell proliferation, genistein induced cAMP/PKA signaling and subsequent phosphorylation of ERK1/2 in both INS1 cells and human islets. Furthermore, genistein induced protein expression of cyclin D1, a major cell-cycle regulator essential for β-cell growth. Dietary intake of genistein significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in both insulin deficient type 1 and obese type 2 diabetic mice, concomitant with improved islet β-cell proliferation, survival, and mass. These changes were not due to alternations in animal body weight gain, food intake, fat deposit, plasma lipid profile, or peripheral insulin sensitivity. Collectively, these findings provide better understanding of the mechanism underlying the anti-diabetic effects of genistein. Loss of functional β-cell mass through apoptosis is central to the development of both T1D and T2D and islet β-cell preservation and regeneration are very important components of β-cell adaptation to increased apoptosis and insulin resistance and therefore holds promise as a treatment for this disease. In this context, these findings may potentially lead to the development of novel low-cost natural agents for prevention and treatment of diabetes.
- Challenges in Personalized Nutrition and HealthVerma, Meghna; Hontecillas, Raquel; Tubau-Juni, Nuria; Abedi, Vida; Bassaganya-Riera, Josep (Frontiers, 2018-11-29)
- Changes in Pancreatic and Jejunal Histopatholgy and Serum IFN-γ, TNF-α Levels in Type 1 Diabetes: Role of Chloroform Methanol Soluble Gliadin ProteinsThakare, Kalpana (Virginia Tech, 2006-06-12)Chloroform methanol (CM) soluble extract of a cereal-based diet has been suggested to induce type 1 diabetes in an experimental animal model of type 1 diabetes. However, the individual constituent of this extract responsible for the disease induction and its disease pathogenesis mechanism remained unexplored. A previous study in our laboratory failed to show that the sphingolipid enriched fraction of CM soluble extract of wheat gluten triggers type 1 diabetes. Therefore, to study the involvement of CM soluble gliadin proteins in type 1 diabetes, we retrospectively analyzed proteins from sphingolipid enriched extract. SDS-PAGE analysis of CM soluble extract of wheat gluten and sphingolipid enriched fraction exhibited protein bands corresponding to the masses of the wheat gliadins, suggesting the presence of gliadin proteins in the CM soluble sphingolipid enriched extract. We studied the effect of five different dietary treatments on the histopathology of pancreatic tissue from BBdp rats includes insulitis scores i.e. lymphocytic infiltration in islet of Langerhans in order to test gliadin specific sphingolipid enriched extract (GSLEE) as possible a diabetogen. However, there were no significant differences in pancreatic insulitis scores and lymphoid tissue content due to addition of (GSLEE) to the hydrolyzed casein (HC) diet. We also investigated changes in jejunal histopathology and sera IFN-γ, TNF-α cytokine concentration in type 1 diabetes, induced by GSLEE. A decrease in jejunal CD4+ and γδ TCR + cell counts and inflammatory cell infiltrate were observed due to presence of CM soluble GSLEE in the HC diet, although this decrease was not statistically significant. A significant increase in sera IFN-γ cytokine concentration was found in BBdp rats fed the HC + GSLEE diet as compared to rats on HC diet. A numerical decrease in sera TNF-α concentration was also observed in BBdp rats fed the HC + GSLEE diet, when compared to BBdp rats on the HC diet. In contrast, a significant increase in serum IFN-γ concentrations in BBdp rats were observed after removing the CM soluble GSLEE from the wheat gluten based diet (WG) when compared to the WG diet alone. Removing GSLEE from WG diet resulted in insignificant increase in serum TNF-α concentration in BBdp rats when compared to WG dietary treatment group's BBdp rats. However, there were no significant differences in jejunal enteropathy parameters (i.e. lymphocytic infiltration, mucosal thickness, epithelial erosion, jejunal villi flattenings), jejunal CD4+ and jejunal γδ TCR+ cell counts; pancreatic insulitis scores, lymphoid tissue content after removing the CM soluble GSLEE from the WG diet when compared to the WG diet. Since overall findings regarding the CM soluble GSLEE's potential to induce type 1 diabetes by changing pancreatic and jejunal histopathology and elevating serum IFN-γ, TNF-α cytokine levels largely remained inconclusive, further investigations are warranted regarding immune suppression potential of the CM soluble sphingolipids in type 1 diabetes and the search of diabetogenic agents remaining in the residue after CM extraction.
- Characterization of Regulatory Mechanisms in Mucosal Immunity by Systems ImmunologyTubau Juni, Nuria (Virginia Tech, 2020-01-28)The mucosal immunity of the gastrointestinal (GI) tract is constituted by a complex, highly specialized and dynamic system of immune components that aim to protect the gut from external threats. The sustained exposure of the mucosal immune system of the GI tract to an enormous number of lumen antigens, requires the constant upkeep of a highly regulated balance between initiation of immune responses against harmful agents and the generation of immune tolerance towards innocuous antigens. Therefore, the regulatory component is key to preserve tissue homeostasis and a normal functioning of the system. Indeed, defective regulatory responses lead to the development of pathological conditions, including unresolved infections, and inflammatory diseases. In this study, we aim to elucidate novel mechanisms involved in host-pathogen interactions during Helicobacter pylori and Clostridium difficile infections. Indeed, this work integrates preclinical in vivo and in vitro experimental approaches together with a bioinformatics pipeline to identify and characterize novel regulatory mechanisms and molecular targets of the mucosal immune system during enteric infections. Firstly, we identified a novel regulatory mechanism during H. pylori infection mediated by a specific subset of IL10-producing tissue resident macrophages. Secondly, we employed an ex vivo H. pylori co-culture with bone marrow derived macrophages, that together with a global transcriptomic analysis and a bioinformatics pipeline, lead to the discovery of promising regulatory genes based on expression kinetics. Lastly, we characterized the innate inflammatory responses induced during the course of C. difficile infection and identified IL-1ß, and its subsequent induction of neutrophil recruitment, as a key mediator of C. difficile-induced effectors responses. The characterized regulatory mechanisms in this work show promise to lead the generation of new host-centered therapeutics through the modulation of the immune response as promising alternative treatments for infectious diseases.
- Computational Modeling-Based Discovery of Novel Classes of Anti-Inflammatory Drugs That Target Lanthionine Synthetase C-Like Protein 2Lu, Pinyi; Hontecillas, Raquel; Horne, William T.; Carbo, Adria; Viladomiu, Monica; Pedragosa, Mireia; Bevan, David R.; Lewis, Stephanie N.; Bassaganya-Riera, Josep (PLOS, 2012-04-11)Background: Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings: The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. Conclusions/Significance: LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.
- Computational modeling-based discovery of novel classes of anti-inflammatory drugs that target lanthionine synthetase C-like protein 2Lu, Pinyi (Virginia Tech, 2015-12-15)Lanthionine synthetase C-like protein 2 (LANCL2) is a member of the LANCL protein family, which is broadly expressed throughout the body. LANCL2 is the molecular target of abscisic acid (ABA), a compound with insulin-sensitizing and immune modulatory actions. LANCL2 is required for membrane binding and signaling of ABA in immune cells. Direct binding of ABA to LANCL2 was predicted in silico using molecular modeling approaches and validated experimentally using ligand-binding assays and kinetic surface plasmon resonance studies. The therapeutic potential of the LANCL2 pathway ranges from increasing cellular sensitivity to anticancer drugs, insulin-sensitizing effects and modulating immune and inflammatory responses in the context of immune-mediated and infectious diseases. A case for LANCL2-based drug discovery and development is also illustrated by the anti-inflammatory activity of novel LANCL2 ligands such as NSC61610 against inflammatory bowel disease in mice. This dissertation discusses the value of LANCL2 as a novel therapeutic target for the discovery and development of new classes of orally active drugs against chronic metabolic, immune-mediated and infectious diseases and as a validated target that can be used in precision medicine. Specifically, in Chapter 2 of the dissertation, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of LANCL1 as a template. Our molecular docking studies predicted that ABA and other PPAR - agonists share a binding site on the surface of LANCL2. In Chapter 3 of the dissertation, structure-based virtual screening was performed. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. In Chapter 4 of the dissertation, we developed a novel integrated approach for creating a synthetic patient population and testing the efficacy of the novel pre-clinical stage LANCL2 therapeutic for Crohn's disease in large clinical cohorts in silico. Efficacy of treatments on Crohn's disease was evaluated by analyzing predicted changes of Crohn's disease activity index (CDAI) scores and correlations with immunological variables were evaluated. The results from our placebo-controlled, randomized, Phase III in silico clinical trial at 6 weeks following the treatment shows a positive correlation between the initial disease activity score and the drop in CDAI score. This observation highlights the need for precision medicine strategies for IBD.
- Dietary alpha-Eleostearic Acid Ameliorates Experimental Inflammatory Bowel Disease in Mice by Activating Peroxisome Proliferator-Activated Receptor-gammaLewis, Stephanie N.; Brannan, Lera; Guri, Amir J.; Lu, Pinyi; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R. (PLOS, 2011-08-31)Background: Treatments for inflammatory bowel disease (IBD) are modestly effective and associated with side effects from prolonged use. As there is no known cure for IBD, alternative therapeutic options are needed. Peroxisome proliferator-activated receptor-gamma (PPARγ) has been identified as a potential target for novel therapeutics against IBD. For this project, compounds were screened to identify naturally occurring PPARγ agonists as a means to identify novel anti-inflammatory therapeutics for experimental assessment of efficacy. Methodology/Principal Findings: Here we provide complementary computational and experimental methods to efficiently screen for PPARγ agonists and demonstrate amelioration of experimental IBD in mice, respectively. Computational docking as part of virtual screening (VS) was used to test binding between a total of eighty-one compounds and PPARγ. The test compounds included known agonists, known inactive compounds, derivatives and stereoisomers of known agonists with unknown activity, and conjugated trienes. The compound identified through VS as possessing the most favorable docked pose was used as the test compound for experimental work. With our combined methods, we have identified α-eleostearic acid (ESA) as a natural PPARγ agonist. Results of ligand-binding assays complemented the screening prediction. In addition, ESA decreased macrophage infiltration and significantly impeded the progression of IBD-related phenotypes through both PPARγ-dependent and –independent mechanisms in mice with experimental IBD. Conclusions/Significance: This study serves as the first significant step toward a large-scale VS protocol for natural PPARγ agonist screening that includes a massively diverse ligand library and structures that represent multiple known target pharmacophores.
- Dietary Modulation of Inflammation-Induced Colorectal Cancer through PPARCarter, Ashlee B.; Misyak, Sarah A.; Hontecillas, Raquel; Bassaganya-Riera, Josep (Hindawi, 2009-04-22)Mounting evidence suggests that the risk of developing colorectal cancer (CRC) is dramatically increased for patients with chronic inflammatory diseases. For instance, patients with Crohn's Disease (CD) or Ulcerative Colitis (UC) have a 12–20% increased risk for developing CRC. Preventive strategies utilizing nontoxic natural compounds that modulate immune responses could be successful in the suppression of inflammation-driven colorectal cancer in high-risk groups. The increase of peroxisome proliferator-activated receptor- (PPAR-) expression and its transcriptional activity has been identified as a target for anti-inflammatory efforts, and the suppression of inflammation-driven colon cancer. PPAR down-modulates inflammation and elicits antiproliferative and proapoptotic actions in epithelial cells. All of which may decrease the risk for inflammation-induced CRC. This review will focus on the use of orally active, naturally occurring chemopreventive approaches against inflammation-induced CRC that target PPAR and therefore down-modulate inflammation.
- Effect of Whey Protein Isolate on Oxidative Stress, Exercise Performance, and ImmunityShute, Max (Virginia Tech, 2004-03-04)The purpose of this study was to evaluate the effectiveness of a whey protein isolate (WPI), a reported glutathione (GSH) booster, on exercise performance, immune function, and antioxidant status during weight maintenance and energy restriction in humans. Twenty well-trained, college age, male cyclists performed a cycling exercise test for 45 min, the first 7 min at 70% of VO2peak and the remaining 38 min at 55% VO₂peak immediately followed by a performance test set at 90% VO2peak until exhaustion. Blood samples were collected prior to the exercise test, after 45 min of exercise, within 5 min of exhaustion, and 1 h after exercise. Blood samples were analyzed for GSH, GSH/GSSG ratio, glutathione peroxidase (GPx), lipid hydroperoxides (LPO), phagocytosis, oxidative burst, peripheral blood mononuclear cell (PBMC) proliferation, and PBMC phenotyping. Subjects consumed 40g/day of WPI or casein placebo (P) along with their normal diet for 2 wk, repeated the exercise test, and then began a low energy period continuing the same supplementation for 4 d before the final exercise test. WPI was not associated with superior exercise performance or antioxidant status following exercise or weight loss. WPI supplementation did result in 33% greater lymphocyte proliferation capacity following exercise. Following exhaustive exercise for all trials, tGSH and GPx increased 7% and 11%, respectively, while WBCGSH decreased 13%. For WPI, GPx activity was 10% lower than P following exhaustive exercise for all trials combined. Weight loss (2.67 ± 0.26 kg) resulted in increases in phagocytosis (65%), white blood cell (WBC) GSH (40%), and GPx (35%) while decreasing the GSH/GSSG ratio (55%) and LPO (16%). Exhaustive exercise caused a 28% increase in CD8+ PBMCs and decreased CD4+ (34%), CD3+ (15%), the CD4+/8+ ratio (45%), and phagocytosis (8%) with all values returning to baseline after 1 h recovery. Supplementation with WPI did not enhance GSH status or exercise performance in trained cyclists, during weight maintenance or energy restriction. Following exercise, WPI is associated with greater lymphocyte proliferation of PBMCs which may help maintain an athlete's health during heavy training or competition.
- Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus VaccinePorier, Danielle L.; Wilson, Sarah N.; Auguste, Dawn I.; Leber, Andrew; Coutermarsh-Ott, Sheryl; Allen, Irving C.; Caswell, Clayton C.; Budnick, James A.; Bassaganya-Riera, Josep; Hontecillas, Raquel; Weger-Lucarelli, James; Weaver, Scott C.; Auguste, A. Jonathan (MDPI, 2021-10-07)Vaccination remains critical for viral disease outbreak prevention and control, but conventional vaccine development typically involves trade-offs between safety and immunogenicity. We used a recently discovered insect-specific flavivirus as a vector in order to develop an exceptionally safe, flavivirus vaccine candidate with single-dose efficacy. To evaluate the safety and efficacy of this platform, we created a chimeric Zika virus (ZIKV) vaccine candidate, designated Aripo/Zika virus (ARPV/ZIKV). ZIKV has caused immense economic and public health impacts throughout the Americas and remains a significant public health threat. ARPV/ZIKV vaccination showed exceptional safety due to ARPV/ZIKV’s inherent vertebrate host-restriction. ARPV/ZIKV showed no evidence of replication or translation in vitro and showed no hematological, histological or pathogenic effects in vivo. A single-dose immunization with ARPV/ZIKV induced rapid and robust neutralizing antibody and cellular responses, which offered complete protection against ZIKV-induced morbidity, mortality and in utero transmission in immune-competent and -compromised murine models. Splenocytes derived from vaccinated mice demonstrated significant CD4+ and CD8+ responses and significant cytokine production post-antigen exposure. Altogether, our results further support that chimeric insect-specific flaviviruses are a promising strategy to restrict flavivirus emergence via vaccine development.
- Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertensionJesmin; Rashid, Mahbubur SM; Jamil, Hasan; Hontecillas, Raquel; Bassaganya-Riera, Josep (2010-10-13)Background The prevalence of diabetes is increasing worldwide. It has been long known that increased rates of inflammatory diseases, such as obesity (OBS), hypertension (HT) and cardiovascular diseases (CVD) are highly associated with type 2 diabetes (T2D). T2D and/or OBS can develop independently, due to genetic, behavioral or lifestyle-related variables but both lead to oxidative stress generation. The underlying mechanisms by which theses complications arise and manifest together remain poorly understood. Protein-protein interactions regulate nearly every living process. Availability of high-throughput genomic data has enabled unprecedented views of gene and protein co-expression, co-regulations and interactions in cellular systems. Methods The present work, applied a systems biology approach to develop gene interaction network models, comprised of high throughput genomic and PPI data for T2D. The genes differentially regulated through T2D were 'mined' and their 'wirings' were studied to get a more complete understanding of the overall gene network topology and their role in disease progression. Results By analyzing the genes related to T2D, HT and OBS, a highly regulated gene-disease integrated network model has been developed that provides useful functional linkages among groups of genes and thus addressing how different inflammatory diseases are connected and propagated at genetic level. Based on the investigations around the 'hubs' that provided more meaningful insights about the cross-talk within gene-disease networks in terms of disease phenotype association with oxidative stress and inflammation, a hypothetical co-regulation disease mechanism model been proposed. The results from this study revealed that the oxidative stress mediated regulation cascade is the common mechanistic link among the pathogenesis of T2D, HT and other inflammatory diseases such as OBS. Conclusion The findings provide a novel comprehensive approach for understanding the pathogenesis of various co-associated chronic inflammatory diseases by combining the power of pathway analysis with gene regulatory network evaluation.
- Genistein Induces Pancreatic beta-Cell Proliferation through Activation of Multiple Signaling Pathways and Prevents Insulin-Deficient Diabetes in MiceFu, Zhuo; Zhang, Wen; Zhen, Wei; Lum, Hazel; Nadler, Jerry; Bassaganya-Riera, Josep; Jia, Zhenquan; Wang, Yanwen; Misra, Hara P.; Liu, Dongmin (Endocrine Society, 2010-07)Genistein, a flavonoid in legumes and some herbal medicines, has various biological actions. However, studies on whether genistein has an effect on pancreatic beta-cell function are very limited. In the present study, we investigated the effect of genistein on beta-cell proliferation and cellular signaling related to this effect and further determined its antidiabetic potential in insulin-deficient diabetic mice. Genistein induced both INS1 and human islet beta-cell proliferation after 24 h of incubation, with 5 mu M genistein inducing a maximal 27% increase. The effect of genistein on beta-cell proliferation was neither dependent on estrogen receptors nor shared by 17 beta-estradiol or a host of structurally related flavonoid compounds. Pharmacological or molecular intervention of protein kinase A (PKA) or ERK1/2 completely abolished genistein-stimulated beta-cell proliferation, suggesting that both molecules are essential for genistein action. Consistent with its effect on cell proliferation, genistein induced cAMP/PKA signaling and subsequent phosphorylation of ERK1/2 in both INS1 cells and human islets. Furthermore, genistein induced protein expression of cyclin D1, a major cell-cycle regulator essential for beta-cell growth. Dietary intake of genistein significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in streptozotocin-induced diabetic mice, concomitant with improved islet beta-cell proliferation, survival, and mass. These results demonstrate that genistein may be a natural antidiabetic agent by directly modulating pancreatic beta-cell function via activation of the cAMP/PKA-dependent ERK1/2 signaling pathway. (Endocrinology 151: 3026-3037, 2010)
- Green tea extract and epigallocatechin gallate decrease muscle pathology and NF-κB immunostaining in regenerating muscle fibers of mdx miceEvans, Nicholas Paul (Virginia Tech, 2009-09-25)Duchenne muscular dystrophy is a debilitating genetic disorder characterized by severe muscle wasting and early death in affected boys. The primary cause of this disease is mutations in the dystrophin gene resulting in the loss of the dystrophin protein from the plasma membrane of muscle fibers. In the absence of dystrophin, muscles undergo massive muscle degeneration and inflammation. Inflammation is believed to contribute substantially to dystrophic muscle pathology. The transcription factor NF-κB regulates inflammatory gene expression and provides a logical target for therapeutic treatments. Green tea extract and its primary polyphenol, epigallocatechin gallate, have been shown to have anti-inflammatory properties and to improve dystrophic muscle pathology. The purpose of these studies was to determine if dietary treatment with green tea extract or epigallocatechin gallate administered prior to disease onset could reduce dystrophic muscle pathology during the early disease time course and identify potential mechanisms through which NF-κB may be involved. Green tea extract has been shown to decrease muscle pathology and increase muscle function in mdx mice, a dystrophic mouse model. These changes have been attributed to the antioxidant potential of epigallocatechin gallate; however, other mechanisms such as suppression of the inflammatory response have not been evaluated. In the studies reported herein, both green tea extract and epigallocatechin gallate significantly decreased muscle pathology in mdx mice when provided in their diets prior to disease onset. In green tea extract (0.25% and 0.5%) treated mdx mice, serum creatine kinase, a systemic marker of muscle damage, was decreased by 85% at age 42 days. Normal fiber morphology in the tibialis anterior muscle was increased by 32% at this age (P≤0.05). The primary histopathological change was a 21% decrease in regenerating fibers (P≤0.05). NF-κB staining in central nuclei of regenerating fibers was decreased by 34% (P≤0.05). In epigallocatechin gallate (0.1%) treated mdx mice, serum creatine kinase was unchanged; however, normal fiber morphology in the tibialis anterior was increased by 20% at ages 28 and 42 days (P≤0.05). At age 42 days, the primary histopathological change was a 21% decrease in regenerating fibers (P≤0.05). NF-κB staining in central nuclei of regenerating muscle fibers was decreased by 21% at this age (P≤0.05). Epigallocatechin gallate appears to be the primary polyphenol of green tea extract responsible for many of the beneficial changes in dystrophic muscle. These data suggest that both green tea extract and epigallocatechin gallate decrease NF-κB activity in regenerating fibers resulting in reduced muscle pathology. Complimentary and alternative medicine approaches, including the use of green tea, provide important therapeutic options for ameliorating Duchenne muscular dystrophy. Green tea extract and epigallocatechin gallate are effective at decreasing muscle pathology potentially by reducing NF-κB activity in regenerating fibers in mdx mice. Use of these botanicals appears to elicit a beneficial response in dystrophic muscle that may ultimately lead to effective therapies for patients with this incurable disease.
- Helicobacter pylori Colonization Ameliorates Glucose Homeostasis in Mice through a PPAR γ-Dependent MechanismBassaganya-Riera, Josep; Dominguez-Bello, Maria Gloria; Kronsteiner, Barbara; Carbo, Adria; Pinyi, Lu; Viladomiu, Monica; Pedragosa, Mireia; Zhang, Xiaoying; Sobral, Bruno; Mane, Shrinivasrao P.; Mohapatra, Saroj K.; Horne, William T.; Guri, Amir J.; Groeschl, Michael; Lopez-Velasco, Gabriela; Hontecillas, Raquel (Public Library of Science, 2012-11-15)Background: There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI) interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag− strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. Methodology/Principal Findings: To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99–305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM) and increased adipose tissue regulatory T cells (Treg) cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4) in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. Conclusions/Significance: Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.
- High-resolution computational modeling of immune responses in the gutVerma, Meghna; Bassaganya-Riera, Josep; Leber, Andrew; Tubau-Juni, Nuria; Hoops, Stefan; Abedi, Vida; Chen, Xi; Hontecillas, Raquel (Oxford University Press, 2019-06-01)Background: Helicobacter pylori causes gastric cancer in 1-2% of cases but is also beneficial for protection against allergies and gastroesophageal diseases. An estimated 85% of H. pylori-colonized individuals experience no detrimental effects. To study the mechanisms promoting host tolerance to the bacterium in the gastrointestinal mucosa and systemic regulatory effects, we investigated the dynamics of immunoregulatory mechanisms triggered by H. pylori using a high-performance computing-driven ENteric Immunity SImulator multiscale model. Immune responses were simulated by integrating an agent-based model, ordinary, and partial differential equations. Results: The outputs were analyzed using 2 sequential stages: The first used a partial rank correlation coefficient regression-based and the second a metamodel-based global sensitivity analysis. The influential parameters screened from the first stage were selected to be varied for the second stage. The outputs from both stages were combined as a training dataset to build a spatiotemporal metamodel. The Sobol indices measured time-varying impact of input parameters during initiation, peak, and chronic phases of infection. The study identified epithelial cell proliferation and epithelial cell death as key parameters that control infection outcomes. In silico validation showed that colonization with H. pylori decreased with a decrease in epithelial cell proliferation, which was linked to regulatory macrophages and tolerogenic dendritic cells. Conclusions: The hybrid model of H. pylori infection identified epithelial cell proliferation as a key factor for successful colonization of the gastric niche and highlighted the role of tolerogenic dendritic cells and regulatory macrophages in modulating the host responses and shaping infection outcomes.
- The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestiDye, Matthew D.; Neff, Chris; Dufford, Max; Rivera, Corban G.; Shattuck, Donna; Bassaganya-Riera, Josep; Murali, T. M.; Sobral, Bruno (Public Library of Science, 2010-08-09)Background: Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion. Methodology: In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity. Significance: These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.
- Immune Cell Subsets Direct or Antagonize Tumor Immunity: Promotion of TH1 Responses in Tumor VaccinationPressley, Jennifer Sparkman (Virginia Tech, 2005-06-02)Tumors evade immune system tumor-controlling functions. T cells critical to antitumor immunity are tolerogenic in tumor-burdened animals, and fail to lyse neoplastic cells. Our goal was to investigate the kinetics of immune dysfunction related to tumor-burdened host (TBH) memory T cell responses (or the lack thereof). We demonstrate tumor growth impairs T cell activation by modulating CD4+ T cell infiltration and systemic CD44 and CD62L activation marker expression, and by downregulating TBH TH1 cytokine production by splenic CD4+ T cells. Since chemotherapeutic treatments have potent cytostatic effects, we posited they enhance T cell dysfunctionality; which leads to limited therapeutic efficacy. Paclitaxel is a potent chemotherapeutic agent currently being administered in Stage III clinical trials; however, it reduces T cell proliferative capacity and interferon-γ (IFN-γ) production. In contrast, our data suggest that administration of low dose paclitaxel prolongs adaptive immunity in a limited capacity. We show paclitaxel enhances CD4highCD62Llow cell populations that drive TH1 cytokine production and prolongs the production of interleukin-2 (IL-2) in TBHs. We hypothesize that the initiation and maintenance of activated TH1 cell populations in patients during therapy serves as a reliable prognostic indicator of a favorable therapeutic response. Paclitaxel's limited therapeutic effects are due, in part, to its suppression of T cell activities; but the administration of low dose chemotherapy in combination with immunotherapeutic agents temporally takes advantage of paclitaxel's immunostimulatory capabilities. Our work will enhance current understanding of immune dysregulation during cancer development, and promote advances in the monitoring and development of combinatorial cancer treatments.
- Immunological, Epidemiological, and Economic modeling of HIV, Influenza, and Fungal MeningitisDorratoltaj, Nargesalsadat (Virginia Tech, 2016-07-28)This dissertation focuses on immunological, epidemiological, and economic modeling of HIV, influenza, and fungal meningitis, and includes three research studies. In the first study on HIV, the study objective is to analyze the dynamics of HIV-1, CD4+ T cells and macrophages during the acute, clinically latent and late phases of HIV infection in order to predict their dynamics from acute infection to clinical latency and finally to AIDS in treatment naive HIV-infected individuals. The findings of the study show that the peak in viral load during acute HIV infection is due to virus production by infected CD4+ T cells, while during the clinically latent and late phases of infection infected macrophages dominate the overall viral production. This leads to the conclusion that macrophage-induced virus production is the significant driver of HIV progression from asymptomatic phase to AIDS in HIV-infected individuals. In the second study on influenza, the study objective is to estimate the direct and indirect epidemiological and economic impact of vaccine interventions during an influenza pandemic in Chicago, and assist in vaccine intervention priorities. Population is distributed among high-risk and non-high risk within 0-19, 20-64 and 65+ years subpopulations. The findings show that based on risk of death and return on investment, high-risk groups of the three age group subpopulations can be prioritized for vaccination, and the vaccine interventions are cost-saving for all age and risk groups. In the third study on fungal meningitis, the study objective is to evaluate the effectiveness and cost of the fungal meningitis outbreak response in New River Valley of Virginia during 2012-2013, from the local public health department and clinical perspectives. We estimate the epidemiological effectiveness of this outbreak response to be 153 DALYs averted among the patients, and the costs incurred by the local health department and clinical facilities to be $30,413 and $39,580 respectively. Moving forward, multi-scale analysis of infectious diseases connecting the different scales of evolutionary, immunological, epidemiological, and economic dynamics has good potential to derive meaningful inferences for decision making in clinical and public health practice, and improve health outcomes.