Changes in Pancreatic and Jejunal Histopatholgy and Serum IFN-γ, TNF-α Levels in Type 1 Diabetes: Role of Chloroform Methanol Soluble Gliadin Proteins

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Chloroform methanol (CM) soluble extract of a cereal-based diet has been suggested to induce type 1 diabetes in an experimental animal model of type 1 diabetes. However, the individual constituent of this extract responsible for the disease induction and its disease pathogenesis mechanism remained unexplored. A previous study in our laboratory failed to show that the sphingolipid enriched fraction of CM soluble extract of wheat gluten triggers type 1 diabetes.

Therefore, to study the involvement of CM soluble gliadin proteins in type 1 diabetes, we retrospectively analyzed proteins from sphingolipid enriched extract. SDS-PAGE analysis of CM soluble extract of wheat gluten and sphingolipid enriched fraction exhibited protein bands corresponding to the masses of the wheat gliadins, suggesting the presence of gliadin proteins in the CM soluble sphingolipid enriched extract.

We studied the effect of five different dietary treatments on the histopathology of pancreatic tissue from BBdp rats includes insulitis scores i.e. lymphocytic infiltration in islet of Langerhans in order to test gliadin specific sphingolipid enriched extract (GSLEE) as possible a diabetogen. However, there were no significant differences in pancreatic insulitis scores and lymphoid tissue content due to addition of (GSLEE) to the hydrolyzed casein (HC) diet. We also investigated changes in jejunal histopathology and sera IFN-γ, TNF-α cytokine concentration in type 1 diabetes, induced by GSLEE. A decrease in jejunal CD4+ and γδ TCR + cell counts and inflammatory cell infiltrate were observed due to presence of CM soluble GSLEE in the HC diet, although this decrease was not statistically significant. A significant increase in sera IFN-γ cytokine concentration was found in BBdp rats fed the HC + GSLEE diet as compared to rats on HC diet. A numerical decrease in sera TNF-α concentration was also observed in BBdp rats fed the HC + GSLEE diet, when compared to BBdp rats on the HC diet.

In contrast, a significant increase in serum IFN-γ concentrations in BBdp rats were observed after removing the CM soluble GSLEE from the wheat gluten based diet (WG) when compared to the WG diet alone. Removing GSLEE from WG diet resulted in insignificant increase in serum TNF-α concentration in BBdp rats when compared to WG dietary treatment group's BBdp rats. However, there were no significant differences in jejunal enteropathy parameters (i.e. lymphocytic infiltration, mucosal thickness, epithelial erosion, jejunal villi flattenings), jejunal CD4+ and jejunal γδ TCR+ cell counts; pancreatic insulitis scores, lymphoid tissue content after removing the CM soluble GSLEE from the WG diet when compared to the WG diet.

Since overall findings regarding the CM soluble GSLEE's potential to induce type 1 diabetes by changing pancreatic and jejunal histopathology and elevating serum IFN-γ, TNF-α cytokine levels largely remained inconclusive, further investigations are warranted regarding immune suppression potential of the CM soluble sphingolipids in type 1 diabetes and the search of diabetogenic agents remaining in the residue after CM extraction.



Type 1 diabetes, Gliadin specific sphingolipid