Browsing by Author "Farhood, Mazen H."
Now showing 1 - 20 of 33
Results Per Page
Sort Options
- A*-Based Path Planning for an Unmanned Aerial and Ground Vehicle Team in a Radio Repeating OperationKrawiec, Bryan Michael (Virginia Tech, 2012-05-02)In the event of a disaster, first responders must rapidly gain situational awareness about the environment in order to plan effective response operations. Unmanned ground vehicles are well suited for this task but often require a strong communication link to a remote ground station to effectively relay information. When considering an obstacle-rich environment, non-line-of-sight conditions and naive navigation strategies can cause substantial degradations in radio link quality. Therefore, this thesis incorporates an unmanned aerial vehicle as a radio repeating node and presents a path planning strategy to cooperatively navigate the vehicle team so that radio link health is maintained. This navigation technique is formulated as an A*-based search and this thesis presents the formulation of this path planner as well as an investigation into strategies that provide computational efficiency to the search process. The path planner uses predictions of radio signal health at different vehicle configurations to effectively navigate the vehicles and simulations have shown that the path planner produces favorable results in comparison to several conceivable naive radio repeating variants. The results also show that the radio repeating path planner has outperformed the naive variants in both simulated environments and in field testing where a Yamaha RMAX unmanned helicopter and a ground vehicle were used as the vehicle team. Since A* is a general search process, this thesis also presents a roadway detection algorithm using A* and edge detection image processing techniques. This algorithm can supplement unmanned vehicle operations and has shown favorable performance for images with well-defined roadways.
- Aerodynamic Uncertainty Quantification and Estimation of Uncertainty Quantified Performance of Unmanned Aircraft Using Non-Deterministic SimulationsHale II, Lawrence Edmond (Virginia Tech, 2017-01-24)This dissertation addresses model form uncertainty quantification, non-deterministic simulations, and sensitivity analysis of the results of these simulations, with a focus on application to analysis of unmanned aircraft systems. The model form uncertainty quantification utilizes equation error to estimate the error between an identified model and flight test results. The errors are then related to aircraft states, and prediction intervals are calculated. This method for model form uncertainty quantification results in uncertainty bounds that vary with the aircraft state, narrower where consistent information has been collected and wider where data are not available. Non-deterministic simulations can then be performed to provide uncertainty quantified estimates of the system performance. The model form uncertainties could be time varying, so multiple sampling methods were considered. The two methods utilized were a fixed uncertainty level and a rate bounded variation in the uncertainty level. For analysis using fixed uncertainty level, the corner points of the model form uncertainty were sampled, providing reduced computational time. The second model better represents the uncertainty but requires significantly more simulations to sample the uncertainty. The uncertainty quantified performance estimates are compared to estimates based on flight tests to check the accuracy of the results. Sensitivity analysis is performed on the uncertainty quantified performance estimates to provide information on which of the model form uncertainties contribute most to the uncertainty in the performance estimates. The proposed method uses the results from the fixed uncertainty level analysis that utilizes the corner points of the model form uncertainties. The sensitivity of each parameter is estimated based on corner values of all the other uncertain parameters. This results in a range of possible sensitivities for each parameter dependent on the true value of the other parameters.
- Automatic Co-Synthesis of Hardware and Software Safety Monitors for Embedded SystemsRezvani, Behnaz (Virginia Tech, 2024-09-19)Embedded systems have become pervasive and increasingly complex, especially in modern applications such as self-driving vehicles, where safety requires both accurate functionality and real-time guarantees. However, the complexity and the integration of artificial intelligence and machine learning algorithms in autonomous systems challenge conventional test-based verification methods. Given the continuous evolution and deployment of these systems, verification must keep pace to ensure their reliability and safety. Runtime verification is a promising approach for validating system behaviors during execution using monitors derived from formal system specifications. The adoption of runtime monitoring has historically been limited to experts, primarily due to the esoteric formal notations and verification processes. To overcome this barrier, this dissertation presents GROOT, a novel methodology and framework designed to automate synthesis of hardware and/or software monitors from pseudo- English statements. The automatic steps include translating English properties to formalisms, converting the formalisms into monitor automata, and formally verifying the monitors. GROOT addresses the distinction between functional and timing requirements inherent in real-time embedded systems by providing distinct pseudo-English languages and synthesis flows. This dual approach allows customized verification processes for each category. To make the monitor structure simple, monitor inputs and responses are handled in separate external modules, allowing formal analysis methods to be used. The synthesized monitors can assist system development and be retained in fielded systems. Their lightweight nature enables the deployment of multiple monitors, each focusing on specific circumstances independently and concurrently. Monitor implementations can range from sequential software to parallel hardware, allowing for flexibility in meeting various system constraints. By eliminating the need for manual code generation and verification, GROOT allows practitioners to synthesize monitors without requiring a formal methods background.
- Computationally Driven Algorithms for Distributed Control of Complex SystemsAbou Jaoude, Dany (Virginia Tech, 2018-11-19)This dissertation studies the model reduction and distributed control problems for interconnected systems, i.e., systems that consist of multiple interacting agents/subsystems. The study of the analysis and synthesis problems for interconnected systems is motivated by the multiple applications that can benefit from the design and implementation of distributed controllers. These applications include automated highway systems and formation flight of unmanned aircraft systems. The systems of interest are modeled using arbitrary directed graphs, where the subsystems correspond to the nodes, and the interconnections between the subsystems are described using the directed edges. In addition to the states of the subsystems, the adopted frameworks also model the interconnections between the subsystems as spatial states. Each agent/subsystem is assumed to have its own actuating and sensing capabilities. These capabilities are leveraged in order to design a controller subsystem for each plant subsystem. In the distributed control paradigm, the controller subsystems interact over the same interconnection structure as the plant subsystems. The models assumed for the subsystems are linear time-varying or linear parameter-varying. Linear time-varying models are useful for describing nonlinear equations that are linearized about prespecified trajectories, and linear parameter-varying models allow for capturing the nonlinearities of the agents, while still being amenable to control using linear techniques. It is clear from the above description that the size of the model for an interconnected system increases with the number of subsystems and the complexity of the interconnection structure. This motivates the development of model reduction techniques to rigorously reduce the size of the given model. In particular, this dissertation presents structure-preserving techniques for model reduction, i.e., techniques that guarantee that the interpretation of each state is retained in the reduced order system. Namely, the sought reduced order system is an interconnected system formed by reduced order subsystems that are interconnected over the same interconnection structure as that of the full order system. Model reduction is important for reducing the computational complexity of the system analysis and control synthesis problems. In this dissertation, interior point methods are extensively used for solving the semidefinite programming problems that arise in analysis and synthesis.
- Constrained Control of Complex Helicopter ModelsOktay, Tugrul (Virginia Tech, 2012-03-19)Complex helicopter models that include effects typically ignored in control models, such as an analytical formulation for fuselage aerodynamics, blade lead-lagging and flexibility, and tail rotor aerodynamics, are derived. The landing gear, horizontal tailplane, a fully articulated main rotor, main rotor downwash, and blade flapping are also modeled. The modeling process is motivated by the desire to build control oriented, physics based models that directly result in ordinary differential equations (ODE) models which are sufficiently rich in dynamics information. A physics based model simplification procedure, which is called new ordering scheme, is developed to reduce the number of terms in these large nonlinear ODE models, while retaining the same number of governing equations of motion. The resulting equations are trimmed and linearized around several flight conditions (i.e. straight level flight, level banked turn, and helical turn) using Maple and Matlab. The resulting trims and model modes are validated against available literature data. The linearized models are first used for the design of variance constrained controllers with inequality constraints on outputs or inputs, output variance constrained controllers (OVC) and input variance constrained controllers (IVC), respectively. The linearized helicopter models are also used for the design of online controllers which exploit the constrained model predictive control (MPC) theory. The ability of MPC to track highly constrained, heterogeneous discontinuous trajectories is examined. The performance and robustness of all these controllers (e.g. OVC, IVC, MPC) are thoroughly investigated with respect to several modeling uncertainties. Specifically, for robustness studies, variations in the flight conditions and helicopter inertial properties, as well as blade flexibility effects, are considered. Furthermore, the effectiveness of adaptive switching between controllers for the management of sensor failure during helicopter operations is studied using variance constrained controllers. Finally, the simultaneous design of the helicopter and control system is examined using simultaneous perturbation stochastic approximation in order to save active control energy.
- A Coordinated Voltage Management Method Utilizing Battery Energy Storage Systems and Smart PV Inverters in Distribution Networks with High PV and Wind PenetrationsAlrashidi, Musaed Owehan (Virginia Tech, 2021-08-16)Electrical distribution networks face many operational challenges as various renewable distributed generation (DG), such as solar photovoltaic (PV) systems and wind, become part of their structure. Unlike conventional distribution systems, where the only unpredictable aspect is the load level, the intermittent nature of DG poses additional uncertainty levels for distribution system operators (DSO). The voltage quality problem considers the most restrictive issue that hinders high DG integration into distribution grids. Voltage deviates from the nominal grid voltage limits due to the excess power from the DG. DSOs are accustomed to improving the voltage profile by optimal adjustments of the on-load tap changers, voltage regulator taps and capacitor banks. Nevertheless, due to the frequent variability of the output energy from DG, these devices may fail in doing the needful. Battery energy storage systems (BESS) and smart PV inverter functionalities are regarded as promising solutions to promote the seamless integration of renewable resources into distribution networks. BESS are utilized to store the surplus energy during the high penetration of renewable DG that causes high voltage levels and discharge the stored energy when the distribution grid is heavily loaded, which leads to the low voltage levels. Smart PV inverters regulate the network voltage by controlling the reactive power injection or absorption at the inverter end. This dissertation proposes a management strategy that coordinates BESS and smart PV inverter reactive power capability to improve voltage quality in the distribution systems with high PV and wind penetrations. The proposed management method is based on a bi-level optimization algorithm consisting of upper and lower optimization levels. The proposed method determines the optimal location, capacity, numbers and BESS charging and discharging rates to support the distribution system voltage and to ensure optimal deployment of BESS. Case studies are conducted to evaluate the proposed voltage control method. The large size PV system and wind turbine impacts are studied and simulated on the modified IEEE-34 bus test feeder. In addition, the proposed method is applied to the modified IEEE low voltage test feeder to investigate the effectiveness of installing residential rooftop PV systems on the distribution system's voltage. Experimental results show promising outcomes of the proposed method in controlling the distribution networks' voltage. In addition, a day-ahead forecast of PV power output is developed in this dissertation to assist the DSOs to accurately predict the future amounts of PV energy available and reinforcing the decision-making process of batteries operation. Hybrid forecasting models are proposed based on machine learning algorithms, which utilize support vector regression and backpropagation neural network, optimized with three metaheuristic optimization algorithms, namely Social Spider Optimization (SSO), Particle Swarm Optimization (PSO) and Cuckoo Search Optimization (CSO). These algorithms are used to improve the predictive efficacy of the selected algorithms, where the optimal selection of their hyperparameters and architectures plays a significant role in yielding precise forecasting outcomes.
- Development of a Peripheral-Central Vision System to Detect and Characterize Airborne ThreatsKang, Chang Koo (Virginia Tech, 2020-10-29)With the rapid proliferation of small unmanned aircraft systems (UAS), the risk of mid-air collisions is growing, as is the risk associated with the malicious use of these systems. The airborne detect-and-avoid (ABDAA) problem and the counter-UAS problem have similar sensing requirements for detecting and tracking airborne threats. In this dissertation, two image-based sensing methods are merged to mimic human vision in support of counter-UAS applications. In the proposed sensing system architecture, a ``peripheral vision'' camera (with a fisheye lens) provides a large field-of-view while a ``central vision'' camera (with a perspective lens) provides high resolution imagery of a specific object. This pair form a heterogeneous stereo vision system that can support range resolution. A novel peripheral-central vision (PCV) system to detect, localize, and classify an airborne threat is first introduced. To improve the developed PCV system's capability, three novel algorithms for the PCV system are devised: a model-based path prediction algorithm for fixed-wing unmanned aircraft, a multiple threat scheduling algorithm considering not only the risk of threats but also the time required for observation, and the heterogeneous stereo-vision optimal placement (HSOP) algorithm providing optimal locations for multiple PCV systems to minimize the localization error of threat aircraft. The performance of algorithms is assessed using an experimental data set and simulations.
- Electromagnetic Interference Attacks on Cyber-Physical Systems: Theory, Demonstration, and DefenseDayanikli, Gokcen Yilmaz (Virginia Tech, 2021-08-27)A cyber-physical system (CPS) is a complex integration of hardware and software components to perform well-defined tasks. Up to this point, many software-based attacks targeting the network and computation layers have been reported by the researchers. However, the physical layer attacks that utilize natural phenomena (e.g., electromagnetic waves) to manipulate safety-critic signals such as analog sensor outputs, digital data, and actuation signals have recently taken the attention. The purpose of this dissertation is to detect the weaknesses of cyber-physical systems against low-power Intentional Electromagnetic Interference (IEMI) attacks and provide hardware-level countermeasures. Actuators are irreplaceable components of electronic systems that control the physically moving sections, e.g., servo motors that control robot arms. In Chapter 2, the potential effects of IEMI attacks on actuation control are presented. Pulse Width Modulation (PWM) signal, which is the industry–standard for actuation control, is observed to be vulnerable to IEMI with specific frequency and modulated–waveforms. Additionally, an advanced attacker with limited information about the victim can prevent the actuation, e.g., stop the rotation of a DC or servo motor. For some specific actuator models, the attacker can even take the control of the actuators and consequently the motion of the CPS, e.g., the flight trajectory of a UAV. The attacks are demonstrated on a fixed-wing unmanned aerial vehicle (UAV) during varying flight scenarios, and it is observed that the attacker can block or take control of the flight surfaces (e.g., aileron) which results in a crash of the UAV or a controllable change in its trajectory, respectively. Serial communication protocols such as UART or SPI are widely employed in electronic systems to establish communication between peripherals (e.g., sensors) and controllers. It is observed that an adversary with the reported three-phase attack mechanism can replace the original victim data with the 'desired' false data. In the detection phase, the attacker listens to the EM leakage of the victim system. In the signal processing phase, the exact timing of the victim data is determined from the victim EM leakage, and in the transmission phase, the radiated attack waveform replaces the original data with the 'desired' false data. The attack waveform is a narrowband signal at the victim baud rate, and in a proof–of–concept demonstration, the attacks are observed to be over 98% effective at inducing a desired bit sequence into pseudorandom UART frames. Countermeasures such as twisted cables are discussed and experimentally validated in high-IEMI scenarios. In Chapter 4, a state-of-art electrical vehicle (EV) charger is assessed in IEMI attack scenarios, and it is observed that an attacker can use low–cost RF components to inject false current or voltage sensor readings into the system. The manipulated sensor data results in a drastic increase in the current supplied to the EV which can easily result in physical damage due to thermal runaway of the batteries. The current switches, which control the output current of the EV charger, can be controlled (i.e., turned on) by relatively high–power IEMI, which gives the attacker direct control of the current supplied to the EV. The attacks on UAVs, communication systems, and EV chargers show that additional hardware countermeasures should be added to the state-of-art system design to alleviate the effect of IEMI attacks. The fiber-optic transmission and low-frequency magnetic field shielding can be used to transmit 'significant signals' or PCB-level countermeasures can be utilized which are reported in Chapter 5.
- Enhancing Performance of Next-Generation Vehicular and Spectrum Sharing Wireless Networks: Practical Algorithms and Fundamental LimitsRao, Raghunandan M. (Virginia Tech, 2020-08-20)Over the last few decades, wireless networks have morphed from traditional cellular/wireless local area networks (WLAN), into a wide range of applications, such as the Internet-of-Things (IoT), vehicular-to-everything (V2X), and smart grid communication networks. This transition has been facilitated by research and development efforts in academia and industry, which has resulted in the standardization of fifth-generation (5G) wireless networks. To meet the performance requirements of these diverse use-cases, 5G networks demand higher performance in terms of data rate, latency, security, and reliability, etc. At the physical layer, these performance enhancements are achieved by (a) optimizing spectrum utilization shared amongst multiple technologies (termed as spectrum sharing), and (b) leveraging advanced spatial signal processing techniques using large antenna arrays (termed as massive MIMO). In this dissertation, we focus on enhancing the performance of next-generation vehicular communication and spectrum sharing systems. In the first contribution, we present a novel pilot configuration design and adaptation mechanism for cellular vehicular-to-everything (C-V2X) networks. Drawing inspiration from 4G and 5G standards, the proposed approach is based on limited feedback of indices from a codebook comprised of quantized channel statistics information. We demonstrate significant rate improvements using our proposed approach in terrestrial and air-to-ground (A2G) vehicular channels. In the second contribution, we demonstrate the occurrence of cellular link adaptation failure due to channel state information (CSI) contamination, because of coexisting pulsed radar signals that act as non-pilot interference. To mitigate this problem, we propose a low-complexity semi-blind SINR estimation scheme that is robust and accurate in a wide range of interference and noise conditions. We also propose a novel dual CSI feedback mechanism for cellular systems and demonstrate significant improvements in throughput, block error rate, and latency, when sharing spectrum with a pulsed radar. In the third contribution, we develop fundamental insights on underlay radar-massive MIMO spectrum sharing, using mathematical tools from stochastic geometry. We consider a multi-antenna radar system, sharing spectrum with a network of massive MIMO base stations distributed as a homogeneous Poisson Point Process (PPP) outside a circular exclusion zone centered around the radar. We propose a tractable analytical framework, and characterize the impact of worst-case downlink cellular interference on radar performance, as a function of key system parameters. The analytical formulation enables network designers to systematically isolate and evaluate the impact of each parameter on the worst-case radar performance and complements industry-standard simulation methodologies by establishing a baseline performance for each set of system parameters, for current and future radar-cellular spectrum sharing deployments. Finally, we highlight directions for future work to advance the research presented in this dissertation and discuss its broader impacts across the wireless industry, and policy-making.
- Framework for Estimating Performance and Associated Uncertainty of Modified Aircraft ConfigurationsDenham, Casey Leigh-Anne (Virginia Tech, 2022-06-22)Flight testing has been the historical standard for determining aircraft airworthiness - however, increases in the cost of flight testing and the accuracy of inexpensive CFD promote certification by analysis to reduce or replace flight testing. A framework is introduced to predict the performance in the special case of a modification to an existing, previously certified aircraft. This framework uses a combination of existing flight test or high fidelity data of the original aircraft as well as lower fidelity data of the original and modified configurations. Two methods are presented which estimate the model form uncertainty of the modified configuration, which is then used to conduct non-deterministic simulations. The framework is applied to an example aircraft system with simulated flight test data to demonstrate the ability to predict the performance and associated uncertainty of modified aircraft configurations. However, it is important that the models and methods used are applicable and accurate throughout the intended use domain. The factors and limitations of the framework are explored to determine the range of applicability of the framework. The effects of these factors on the performance and uncertainty results are demonstrated using the example aircraft system. The framework is then applied to NASA's X-57 Maxwell and each of its modifications. The estimated performance and associated uncertainties are then compared to the airworthiness criteria to evaluate the potential of the framework as a component to the certification by analysis process.
- A Greedy Search Algorithm for Maneuver-Based Motion Planning of Agile VehiclesNeas, Charles Bennett (Virginia Tech, 2010-11-30)This thesis presents a greedy search algorithm for maneuver-based motion planning of agile vehicles. In maneuver-based motion planning, vehicle maneuvers are solved offline and saved in a library to be used during motion planning. From this library, a tree of possible vehicle states can be generated through the search space. A depth-first, library-based algorithm called AD-Lib is developed and used to quickly provide feasible trajectories along the tree. AD-Lib combines greedy search techniques with hill climbing and effective backtracking to guide the search process rapidly towards the goal. Using simulations of a four-thruster hovercraft, AD-Lib is compared to existing suboptimal search algorithms in both known and unknown environments with static obstacles. AD-Lib is shown to be faster than existing techniques, at the expense of increased path cost. The motion planning strategy of AD-Lib along with a switching controller is also tested in an environment with dynamic obstacles.
- A Hardware-Minimal Unscented Kalman Filter Framework for Visual-Inertial Navigation of Small Unmanned AircraftEddy, Joshua Galen (Virginia Tech, 2017-06-06)This thesis presents the development and implementation of a software framework for estimating the position of a drone during flight. This framework is based on an algorithm known as the Unscented Kalman Filter (UKF), a recursive method of estimating the state of a highly nonlinear system, such as an aircraft. In this thesis, we present a UKF formulation specially designed for a quadcopter carrying an Inertial Measurement Unit (IMU) and a downward-facing camera. The UKF fuses data from each of these sensors to track the position of the quadcopter over time. This work supports a number of similar efforts in the robotics and aerospace communities to navigate in GPS-denied environments with minimal hardware and minimal computational complexity. The software framework explored in this thesis provides a means for roboticists to easily implement similar UKF-based state estimators for a wide variety of systems, including surface vessels, undersea vehicles, and automobiles. We test the system's effectiveness by comparing its position estimates to those of a commercial motion capture system and then discuss possible applications.
- Linear Parameter Varying Path Following Control of a Small Fixed Wing Unmanned Aerial VehicleGuthrie, Kyle Thomas (Virginia Tech, 2013-09-02)A mathematical model of a small fixed-wing aircraft was developed through application of parameter estimation techniques to simulated flight test data. Multiple controllers were devised based on this model for path following, including a self-scheduled linear parameter-varying (LPV) controller with path curvature as a scheduling parameter. The robustness and performance of these controllers were tested in a rigorous MATLAB simulation environment that included steady winds and gusts, measurement noise, delays, and model uncertainties. The linear controllers designed within were found to be robust to the disturbances and uncertainties in the simulation environment, and had similar or better performance in comparison to a nonlinear control law operating in an inner-outer loop structure. Steps are being taken to implement the resulting controllers on the unmanned aerial vehicle (UAV) testbed in the Nonlinear Systems Laboratory at Virginia Tech.
- A Low-Cost Unmanned Aerial Vehicle Research Platform: Development, Modeling and Advanced Control ImplementationArifianto, Ony (Virginia Tech, 2014-07-02)This dissertation describes the development and modeling of a low-cost, open source, and reliable small fixed-wing unmanned aerial vehicle (UAV) for advanced control implementation. The platform is mostly constructed of low-cost commercial off-the-shelf (COTS) components. The only non-COTS components are the airdata probes which are manufactured and calibrated in-house, following a procedure provided herein. The airframe used is the commercially available radio-controlled 6-foot Telemaster airplane from Hobby Express. The airplane is chosen mainly for its adequately spacious fuselage and for being reasonably stable and sufficiently agile. One noteworthy feature of this platform is the use of two separate low-cost open source onboard computers for handling the data management/hardware interfacing and control computation. Specifically, the single board computer, Gumstix Overo Fire, is used to execute the control algorithms, whereas the autopilot, Ardupilot Mega, is mostly used to interface the Overo computer with the sensors and actuators. The platform supports multi-vehicle operations through the use of a radio modem that enables multi-point communications. As the goal of the development of this platform is to implement rigorous control algorithms for real-time trajectory tracking and distributed control, it is important to derive an appropriate flight dynamic model of the platform, based on which the controllers will be synthesized. For that matter, reasonably accurate models of the vehicle, servo motors and propulsion system are developed. Namely, the output error method is used to estimate the longitudinal and lateral-directional aerodynamic parameters from flight test data. The moments of inertia of the platform are determined using the simple pendulum test method, and the frequency response of each servomotor is also obtained experimentally. The Javaprop applet is used to obtain lookup tables relating airspeed to propeller thrust at constant throttle settings. Control systems are also designed for the regulation of this UAV along real-time trajectories. The reference trajectories are generated in real-time from a library of pre-specified motion primitives and hence are not known a priori. Two concatenated primitive trajectories are considered: one formed from seven primitives exhibiting a figure-8 geometric path and another composed of a Split-S maneuver that settles into a level-turn trim trajectory. Switched control systems stemming from l2-induced norm synthesis approaches are designed for discrete-time linearized models of the nonlinear UAV system. These controllers are analyzed based on simulations in a realistic operational environment and are further implemented on the physical UAV. The simulations and flight tests demonstrate that switched controllers, which take into account the effects of switching between constituent sub-controllers, manage to closely track the considered trajectories despite the various modeling uncertainties, exogenous disturbances and measurement noise. These switched controllers are composed of discrete-time linear sub-controllers designed separately for a subset of the pre-specified primitives, with the uncertain initial conditions, that arise when switching between primitives, incorporated into the control design.
- Maneuver-Based Motion Control of a Miniature HelicopterRogers, Christopher Michael (Virginia Tech, 2010-12-06)This thesis deals with the control of a highly maneuverable miniature helicopter about trajectories, generated online, from a library of prespecified maneuvers. Linearizing the nonlinear equations describing the helicopter dynamics about the prespecified, library maneuvers results in a hybrid linear time-varying (LTV) model. Two control approaches are used to design controllers corresponding to each library maneuver: the standard L2-induced norm approach and an approach which also uses the L2-induced norm as a performance measure while accounting for uncertain initial states. Each control approach is evaluated in closed-loop simulation with a nonlinear helicopter model. The controllers are set to drive the helicopter model to track desired trajectories in the presence of disturbances such as wind gusts, turbulence, sensor noise, and uncertain initial conditions. For the specific plant formulations and trajectories presented, performance is comparable for both control approaches; however, it is possible to improve controller performance by exploiting some of the features of the approach accounting for uncertain initial states. These improvements in performance are topics for future work along with implementation of the presented approaches and results on a remote control helicopter.
- Modeling and Control of Tensegrity-Membrane SystemsYang, Shu (Virginia Tech, 2016-06-30)Tensegrity-membrane systems are a class of new bar-tendon-membrane systems. Such novel systems can be treated as extensions of tensegrity structures and are generally lightweight and deployable. These two major advantages enable tensegrity-membrane systems to become one of the most promising candidates for lightweight space structures and gossamer spacecraft. In this dissertation, modeling and control of tensegrity-membrane systems is studied. A systematic method is developed to determine the equilibrium conditions of general tensegrity-membrane systems. Equilibrium conditions can be simplified when the systems are in symmetric configurations. For one-stage symmetric systems, analytical equilibrium conditions can be determined. Three mathematical models are developed to study the dynamics of tensegrity-membrane systems. Two mathematical models are developed based on the nonlinear finite element method. The other model is a control-oriented model, which is suitable for control design. Numerical analysis is conducted using these three models to study the mechanical properties of tensegrity-membrane systems. Two control strategies are developed to regulate the deployment process of tensegrity-membrane systems. The first control strategy is to deploy the system by a nonlinear adaptive controller and use a linear H∞ controller for rapid system stabilization. The second control strategy is to regulate the dynamics of tensegrity-membrane systems using a linear parameter-varying (LPV) controller during system deployment. A gridding method is employed to discretize the system operational region in order to carry out the LPV control synthesis.
- Modeling and Scaling of a Flexible Subscale Aircraft for Flight Control Development and Testing in the Presence of Aeroservoelastic InteractionsOuellette, Jeffrey Alan (Virginia Tech, 2013-09-18)The interaction of an aircraft's structure and the flight dynamics can degrade the performance of a controller designed only considering the rigid body flight dynamics. These concerns are greater for the next generation adaptive controls. These interactions lead to an increase in the tracking error, instabilities in the control parameters, and significant structural excitations. To improve the understanding of these issues the interactions have been examined using simulation as well as flight testing of a subscale aircraft. The scaling required for such a subscale aircraft has also been examined. For the simulation a coordinate system where the non-linear flight dynamics are orthogonal to the linear structural dynamics was defined. The orthogonality allows the use of separates models for the aerodynamics. For the non-linear flight dynamics, preexisting table lookups with extended vortex lattice are used to determine the aerodynamic forces. Strip theory is then used to determine the smaller, but still important, unsteady aerodynamic forces due to the flexible motion. Because the orientation of the engines is dependent on the structural deformations, the propulsive force is modeled as a non-conservative follower force. The simulation of the integrated dynamics is then used to examine the effects of the aircraft flexibility and resultant ASE interactions on the performance of adaptive controls. For the scaling, the complete similitude of a flexible aircraft was examined. However, this complete similitude is unfeasible for an actual model, so partial similitude is investigated using two approaches. First, the classical approximations of the flight dynamic modes are used to reduce the order of the coupled model, and consequently the number of scaling parameters required to maintain the physics of the system. The second approach uses sensitivity of the response to errors in the aircraft's nondimensional parameters. Both methods give a consistent set of nondimensional parameters which do not have significant influence on the aeroservoelastic interaction. These parameters do not need to be scaled, thus leading to a viable scaled model. A subscale vehicle has been designed which shows significant coupling between the flight dynamics and structural dynamics. This vehicle was used to validate the results of the scaling theory. Output error system identification was used to identify a model from the flight test data. This identified model provides the frequency of the short-period mode, and the effects of the Froude number on the flexibility.
- Modeling, Identification, and Control of an Unmanned Surface VehicleSonnenburg, Christian R. (Virginia Tech, 2013-01-16)This dissertation addresses the modeling, identification, and control of an automated planing vessel. To provide motion models for trajectory generation and to enable model-based control design for trajectory tracking, several experimentally identified models are compared over a wide range of speed and planing conditions for the Virginia Tech Ribcraft Unmanned Surface Vehicle. The modeling and identification objective is to determine a model which is sufficiently rich to enable effective model-based control design and trajectory optimization, sufficiently simple to allow parameter identification, and sufficiently general to describe a variety of hull forms and actuator configurations. Beginning with a 6 degree of freedom nonlinear dynamic model, several linear steering and speed models are obtained as well as a thruster model. The Ribcraft USV tracks trajectories generated with the selected maneuvering models by using a back- stepping trajectory controller. A PD cascade trajectory control law is also developed and the performance of the two controllers is compared using aggressive trajectories. The backstepping control law compares favorably to the PD cascade controller. The backstepping control law is then further modified to account for nonlinear sternward dynamics and for a constant or slowly varying fluid flow.
- A Multi-Constellation Multi-Frequency GNSS Software Receiver Design for Ionosphere Scintillation StudiesPeng, Senlin (Virginia Tech, 2012-07-27)Ionospheric scintillations can cause significant amplitude and/or phase fluctuations of GNSS signals. This work presents analysis results of scintillation effects on the new GPS L5 signal based on data collected using a real-time scintillation monitoring and data collection system at HAARP, Alaska. The data collection setup includes a custom narrow band front end that collects GPS L1, L2 IF samples and two reconfigurable USRP2 based RF front ends to collect wideband GPS L5 and GLONASS L1 and L2 signals. The results confirm that scintillation has a stronger impact on GPS L2 and L5 signals than on the L1 signal. Our preliminary results also show that carrier phase and amplitude scintillations on each signal are highly correlated. The amplitude and carrier phase scintillation are also correlated among the three signals. In this study, a multi-constellation multi-band GNSS software receiver has been developed based on USRP2, a general purpose radio platform. The C++ class-based software receiver were developed to process the IF data for GPS L1, L2C, and L5 and GLONASS L1 and L2 signals collected by the USRP2 front end. The front end performance is evaluated against the outputs of a high end custom front end driven by the same local oscillator and two commercial receivers, all using the same real signal sources. These results demonstrate that the USRP2 is a suitable front end for applications, such as ionosphere scintillation studies. Another major contribution of this work is the implementation of a Vector tracking loop (VTL) for robust carrier tracking. The VTL is developed based on the extended Kalman filter (EKF) with adaptive covariance matrices. Both scalar tracking loop (STL) and VTL are implemented. Once an error in the scalar loop is detected, the results from the VTL are used to assist the STL. The performance of the VTL is compared with the traditional STL with three different data sets: raw GPS RF data with short signal outages, RF data with strong scintillation impacts collected during the last solar maximum, and high dynamic data with long interval signal outages from a GPS simulator. The results confirm the performance improvement of the VTL over scintillation impacts and show that the VTL can maintain signal lock during long intervals of signal outage if the satellite ephemerides are available and the pseudorange estimation is within one code chip accuracy. The dynamic performance improvement of the VTL is verified as well. The results show the potential of robust tracking based on VTL during scintillation and interference.
- New Optimal-Control-Based Techniques for Midcourse Guidance of Gun-Launched Guided ProjectilesSkamangas, Emmanuel Epaminondas (Virginia Tech, 2021-03-17)The following is an exploration into the optimal guidance and control of gun-launched guided projectiles. Unlike their early counterparts, modern-day gun-launched projectiles are capable of considerable accuracy. This ability is enabled through the use of control surfaces, such as fins or wings, which allow the projectile to maneuver towards a target. These aerodynamic features are part of a control system which lets the projectile achieve some effect at the target. With the advent of very high velocity guns, such as the Navy's electromagnetic railgun, these systems are a necessary part of the projectile design. This research focuses on a control scheme that uses the projectile's angle of attack as the single control in the development of an optimal control methodology that maximizes impact velocity, which is directly related to the amount of damage in icted on the target. This novel approach, which utilizes a reference trajectory as a seed for an iterative optimization scheme, results in an optimal control history for a projectile. The investigation is geared towards examining how poor an approximation of the true optimal solution that reference trajectory can be and still lead to the determination of an optimal control history. Several different types of trajectories are examined for their applicability as a reference trajectory. Although the use of aerodynamic control surfaces enables control of the projectile, there is a potential down side. With steady development of guns with longer ranges and higher launch velocities, it becomes increasingly likely that a projectile will y into a region of the atmosphere (and beyond) in which there is not sufficient air ow over the control surfaces to maintain projectile control. This research is extended to include a minimum dynamic pressure constraint in the problem; the imposition of such a constraint is not examined in the literature. Several methods of adding the constraint are discussed and a number of cases with varying dynamic pressure limits are evaluated. As a result of this research, a robust methodology exists to quickly obtain an optimal control history, with or without constraints, based on a rough reference trajectory as input. This methodology finds its applicability not only for gun-launched weapons, but also for missiles and hypersonic vehicles.