Browsing by Author "Krometis, Leigh-Anne H."
Now showing 1 - 20 of 66
Results Per Page
Sort Options
- Advancing Rural Public Health: From Drinking Water Quality and Health Outcome Meta-analyses to Wastewater-based Pathogen MonitoringDarling, Amanda Victoria (Virginia Tech, 2024-10-07)A rural-urban divide in health status and healthcare infrastructure has been well-documented in the U.S., where populations residing in census regions classified as rural often exhibit more negative health outcomes, adverse health behaviors, and have reduced access to affordable and proximal health services, compared to their urban and peri-urban counterparts. However, it is important to note that such disparities vary based on specific rural regions and individual circumstances. Rural areas may face elevated risk factors for infectious diseases such as increased proximity to wildlife and livestock and disproportionately high reliance on private, non-federally regulated, primary drinking water sources. Chronic conditions prevalent in rural communities such as diabetes and hypertension are frequently linked with longer duration and higher severity of symptoms than in urban areas; this association suggests that the risk of exposure to infectious diseases and the likelihood of progression to serious illness and hospitalization may be elevated, although this is not universally the case across all rural settings. Alongside documented urban-rural health disparities, there also exist disparities in the nature and quality of data on health-related behaviors, outcomes, and service provision in rural areas compared to urban and peri-urban regions. In this dissertation, two key environmental matrices –drinking water and wastewater– were highlighted as vectors of information to better estimate levels of contaminant exposures and health outcomes in rural communities. First, baseline data on drinking water contaminant levels and associated health outcome data were highlighted as crucial for refining holistic exposure estimates as well as understanding drinking water related health burdens in rural communities where a larger proportion of households use private drinking water sources, such as well water, that are not federally regulated. Second, systematic sampling and testing of pathogen biomarkers in wastewater to non-invasively measure population-level health status, also known as wastewater based surveillance (WBS) and, depending on the context, wastewater based epidemiology (WBE) is not constrained by disadvantages of clinical testing, e.g., limited health-care access, long travel times to testing facilities, delay between symptom-onset and testing. Thus, expanded implementation of WBS in rural communities is proposed here as a strategy to address data disparities in clinical testing for infectious diseases. Collectively, this dissertation advances knowledge on estimated drinking water contaminant levels, exposures, and associated public health outcomes and corresponding research gaps in rural Appalachian U.S., and elucidates pathways toward best practices and considerations for public-health focused wastewater testing adoption in rural communities. For the latter, the question of whether WBS challenges unique to rural wastewater systems hinder application of WBS in small, rural communities was explored, as well as methods to advance best-practices for rural WBS. To summarize existing publicly available peer-reviewed literature on drinking water contaminants in rural Appalachian U.S., in Chapter 2, a systematic review and meta-analysis of microbial and chemical drinking water contaminants was performed. Key contaminants were identified as being elevated beyond regulatory, health-based, maximum contaminant levels in our meta-analyses from rural drinking water sources in Appalachia, including E coli, lead, arsenic, uranium. Overall, we found data on drinking water source quality under baseline conditions (i.e., rather than post anomalous contamination events such as chemical spills) in rural Appalachian U.S. was sparse relative to widespread media coverage on the issue. Epidemiologic-based research studies that collected both drinking water exposure data and paired health outcome data were also limited. As a result, although some instances of anomalously high levels of drinking water contaminants were identified in rural Appalachia from the published literature, we could not obtain a clear picture of baseline exposures to drinking water contaminants in most rural Appalachian communities, highlight need to address these knowledge gaps. In Chapter 3, to evaluate whether wastewater could serve as a reliable metric for estimating community circulation of viruses and antimicrobial resistance (AMR) markers, even when sourced from aging and low-resource sewer collection networks, a 12-month wastewater monitoring study was conducted in a small, rural sewer conveyance system with pronounced infrastructural challenges. Specifically, the field site under study was compromised with heavy inflow and infiltration (IandI). Detection rates and concentrations of viral, AMR, and human fecal markers were grouped by levels of IandI impact across the sewershed, and location-, date-, and sample- specific variables were assessed for their relative influence on viral, AMR, and human fecal marker signal using generalized linear models (GLMs). We found that while IandI likely adversely impacted the magnitude of wastewater biomarker signal to some extent throughout the sewershed, especially up-sewer at sites with more pronounced IandI, substantial diminishment of wastewater signal at WWTP influent was not observed in response to precipitation events. Thus, our data indicated that WWTP influent sampling alone can still be used to assess and track community circulation of pathogens in heavily IandI impacted systems, particularly for ubiquitously circulating viruses less prone to dilution induced decay. Delineations were also made for what circumstances up-sewer sampling may be necessary to better inform population shedding of pathogens, especially where IandI is prevalent. Various normalization strategies have been proposed to account for sources of variability for deriving population-level pathogen shedding from wastewater, including those introduced by IandI-driven dilution. Thus, in Chapter 4, we evaluated the temporal and spatial variability of viral and AMR marker signal in wastewater at different levels of IandI, both unnormalized and with the adoption of several normalization strategies. We found that normalization using physicochemical-based wastewater strength metrics (chemical oxygen demand, total suspended solids, phosphate, and ammonia) resulted in higher temporal and site-specific variability of SARS-CoV-2 and human fecal biomarker signal compared to unnormalized data, especially for viral and AMR marker signal measured in wastewater from sites with pronounced IandI. Viral wastewater signal normalized to physicochemical wastewater strength metrics and flow data also closely mirrored precipitation trends, suggesting such normalization approaches may more closely scale wastewater trends towards precipitation patterns rather than per capita signal in an IandI compromised system. We also found that in most cases, normalization did not significantly alter the relationship between wastewater trends and clinical infection trends. These findings suggest a degree of caution is warranted for some normalization approaches, especially where precipitation driven IandI is heightened. However, data and findings largely supported the utility of using human fecal markers such as crAssphage for normalizing wastewater signal to address site-specific differences in dilution levels, since viral signal scaled to this metric did not result in strong correlations between precipitation and wastewater trends, higher spatial and temporal variation was not observed, and strong correlations were observed between viral signal and viral infection trends. Finally, in chapter 5, we assessed the relationship between monthly Norovirus GII, Rotavirus, and SARS-CoV-2 wastewater trends with seasonal infection trends for each of the viruses to ascertain whether WBE could be used in a rural sewershed of this size with substantial IandI impacts to track and potentially predict population level infection trends. Though up-sewer, or near-source sampling, at sites with permanent IandI impacts did not exhibit a clear relationship with seasonal infection trends for Rotavirus, SARS-CoV-2, and Norovirus GII, WWTP influent signal and consensus signals aggregated from multiple up-sewer sites largely mirrored expected seasonal trends. Findings also suggested that for more ubiquitous viral targets, such as SARS-CoV-2, viral trends measured at WWTP influent in a small IandI impacted system may still provide a sufficiently useful measure of infection trends to inform the use of WBE (assuming appropriate normalization to sewershed population). These findings elucidate the potential utility and relative robustness of wastewater testing to ascertain community-level circulation of pathogens in small, rural sewersheds even those compromised by extensive IandI inputs. Overall, this dissertation examined drinking water and wastewater as critical metrics for assessing contaminant exposures and infectious disease trends in rural communities, particularly in the context of small, rural communities which tend to have more limited health infrastructure and lower-resource wastewater systems. Overall, findings underscore the need for baseline data on drinking water quality by identifying gaps in current knowledge and calling for further research to better understand drinking water contaminant exposure levels in rural areas. Wastewater as a non-invasive, population-level health metric was evaluated in the context of a small, rural sewer system overall, and by varying observed levels of IandI, as well as associated tradeoffs for normalization adoption. By evaluating these environmental surveillance metrics using both desk-based and field-based research study designs, findings from this dissertation offer valuable insights and practical recommendations for improving baseline drinking water quality monitoring and wastewater pathogen testing, all with the overarching goal of supporting more targeted public health interventions in rural settings.
- Advancing the Global Land Grant Institution: Creating a Virtual Environment to Re-envision Extension and Advance GSS-related Research, Education, and CollaborationHall, Ralph P.; Polys, Nicholas F.; Sforza, Peter M.; Eubank, Stephen D.; Lewis, Bryan L.; Krometis, Leigh-Anne H.; Pollyea, Ryan M.; Schoenholtz, Stephen H.; Sridhar, Venkataramana; Crowder, Van; Lipsey, John; Christie, Maria Elisa; Glasson, George E.; Scherer, Hannah H.; Davis, A. Jack; Dunay, Robert J.; King, Nathan T.; Muelenaer, Andre A.; Muelenaer, Penelope; Rist, Cassidy; Wenzel, Sophie (Virginia Tech, 2017-05-15)The vision for this project has emerged from several years of research, teaching, and service in Africa and holds the potential to internationalize education at Virginia Tech and in our partner institutions in Malawi. The vision is simple, to develop a state-of-the-art, data rich, virtual decision-support and learning environment that enables local-, regional-, and national-level actors in developed and developing regions to make decisions that improve resilience and sustainability. Achieving these objectives will require a system that can combine biogeophysical and sociocultural data in a way that enables actors to understand and leverage these data to enhance decision-making at various levels. The project will begin by focusing on water, agricultural, and health systems in Malawi, and can be expanded over time to include any sector or system in any country. The core ideas are inherently scalable...
- Analyzing multiple-source water usage patterns and affordability in rural central AppalachiaDudzinski, Emerald; Ellis, Kimberly P.; Krometis, Leigh-Anne H.; Albi, Kate; Cohen, Alasdair (2024-07-18)Nearly 500,000 American households lack complete plumbing, and more than 21 million Americans are reliant on public drinking water systems with at least one annual health-based drinking water violation. Rural, low-income, and minority communities are significantly more likely to be burdened with unavailable or unsafe in-home drinking water. Lack of access and distrust of the perceived quality of municipally supplied water are leading an increasing number of Americans to rely instead on less regulated, more expensive, and potentially environmentally detrimental water sources, such as roadside springs and bottled water. Previous research studies have stressed the importance of considering the economic burden of all water related expenditures including financial and non-financial water related costs; however, past examinations of water costs have primarily focused on municipal water supplies. We propose an economic model to consider the full economic burden associated with multiple-source water use by incorporating both direct costs (e.g., utility bills, well maintenance, bottled water purchase, payments for water hauling/delivery) and indirect water-related expenditures (e.g., transportation costs to gather water, productivity lost due to time spent collecting). Using data gathered from household surveys along with the economic model, this study estimates the economic burden from two case studies in rural Central Appalachia with persistent water quality concerns: (1) McDowell County, WV (n=15) and (2) Letcher and Harlan Counties, KY (n=9). All surveyed households (n=24) rely on multiple-source water to meet their needs, frequently citing their perception of unsafe in-home tap water. Bottled water was the most common choice for drinking water in both settings (92%, n=24), though roadside spring use was also prevalent in McDowell County, WV (53%, n=15). The results show that multiple-water source use is associated with a large economic burden. Households reliant primarily on bottled water as their drinking water source spent 12.3% (McDowell County, WV) and 5.6% (Letcher and Harlan Counties, KY) of their respective county’s median household income (MHI) on water related expenditures. Households reliant primarily on roadside springs as their drinking water source spent 11.8% (McDowell County, WV) of MHI on water related expenditures. Hence, the vast majority of participating households (92%, n=24) spend above the US water affordability threshold of 2% MHI. The application of this economic model highlights major water affordability concerns in water insecure Appalachian communities and provides a foundation for future studies and enhancements.
- Antimicrobial Resistance Mitigation [ARM] Concept PaperVikesland, Peter J.; Alexander, Kathleen A.; Badgley, Brian D.; Krometis, Leigh-Anne H.; Knowlton, Katharine F.; Gohlke, Julia M.; Hall, Ralph P.; Hawley, Dana M.; Heath, Lenwood S.; Hession, W. Cully; Hull, Robert Bruce IV; Moeltner, Klaus; Ponder, Monica A.; Pruden, Amy; Schoenholtz, Stephen H.; Wu, Xiaowei; Xia, Kang; Zhang, Liqing (Virginia Tech, 2017-05-15)The development of viable solutions to the global threat of antimicrobial resistance requires a transdisciplinary approach that simultaneously considers the clinical, biological, social, economic, and environmental drivers responsible for this emerging threat. The vision of the Antimicrobial Resistance Mitigation (ARM) group is to build upon and leverage the present strengths of Virginia Tech in ARM research and education using a multifaceted systems approach. Such a framework will empower our group to recognize the interconnectedness and interdependent nature of this threat and enable the delineation, development, and testing of resilient approaches for its mitigation. We seek to develop innovative and sustainable approaches that radically advance detection, characterization, and prevention of antimicrobial resistance emergence and dissemination in human-dominated and natural settings...
- Approximating Community Water System Service Areas to Explore the Demographics of SDWA Compliance in VirginiaMarcillo, Cristina; Krometis, Leigh-Anne H.; Krometis, Justin (MDPI, 2021-12-16)Although the United States Safe Drinking Water Act (SDWA) theoretically ensures drinking water quality, recent studies have questioned the reliability and equity associated with community water system (CWS) service. This study aimed to identify SDWA violation differences (i.e., monitoring and reporting (MR) and health-based (HB)) between Virginia CWSs given associated service demographics, rurality, and system characteristics. A novel geospatial methodology delineated CWS service areas at the zip code scale to connect 2000 US Census demographics with 2006–2016 SDWA violations, with significant associations determined via negative binomial regression. The proportion of Black Americans within a service area was positively associated with the likelihood of HB violations. This effort supports the need for further investigation of racial and socioeconomic disparities in access to safe drinking water within the United States in particular and offers a geospatial strategy to explore demographics in other settings where data on infrastructure extents are limited. Further interdisciplinary efforts at multiple scales are necessary to identify the entwined causes for differential risks in adverse drinking water quality exposures and would be substantially strengthened by the mapping of official CWS service boundaries.
- Are There Alternative Methods for Treating Wastewater in the Rural SoutheastWithers, Urban; Thompson, Theresa M.; Krometis, Leigh-Anne H.; Burchell, Michael (2016-06-08)The treatment of municipal wastewater is widely considered one of the greatest environmental health achievements of the 20th century; however, insufficient household wastewater disposal systems – such as piping raw sewage into streams – still persist in rural regions of the southeastern United States (aka “straight pipes”). These systems are commonly found in isolated residential areas where it is technically and financially difficult to extend municipal waste treatment technology. As constructed wetland technology improves, subsurface, lateral-flow wetlands are increasingly valid alternatives to traditional septic drain fields, and could be successfully implemented to replace straight pipes in the rural Southeast.
- Assessing Vulnerabilities to the Spread of Pathogens and Antibiotic Resistance in Agricultural and Water Systems Using Culture-, Molecular-, and Metagenomic-based TechniquesKeenum, Ishi M. (Virginia Tech, 2021-09-09)As climate change exacerbates water scarcity and alters available water and fertilizer resources, it is vital that take appropriate measures to ensure sustainable treatment of water, wastewater, and other waste streams that are protective of public health and support recovery and reuse of water and nutrients. The overarching theme of this dissertation is the advancement of next-generation DNA sequencing (NGS) and computational tools for achieving these goals. A suite of relevant fecal and environmental opportunistic pathogens are examined using both culture-based and NGS-based methods. Of particular concern to this research was not only the attenuation and inactivation of pathogens, but also ensuring that optimal treatment approaches reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Key systems that were the focus of this effort included nutrient reuse (wastewater-derived biosolids and cattle-derived manure), water reuse, and drinking water systems disrupted by a major hurricane. A field study was carried out to survey a suite of pathogens from source-to tap in six small drinking water systems in Puerto Rico six months after Hurricane Maria. The study revealed that pathogenic Leptospira DNA was detected in all systems that were reliant on surface water. On the other hand, Salmonella spp. was detected in surface and groundwater sources and some distribution system waters both by culture and PCR. The study provided comparison of molecular-, microscopic-, and culture-based analysis for pathogen detection and highlighted the need for disaster preparedness for small water systems, including back-up power supply and access to chlorination as soon as possible after a natural disaster. A second field-study examined wastewater derived solids across an international transect of wastewater treatment plants in order to gain insight into the range of ARG concentrations encountered. It was found that, while total ARGs did not vary between treatment or continent of origin, clinically-relevant ARGs (i.e., ARGs encoding resistance to important classes of antibiotics used in humans) were significantly higher in solids derived from Asian wastewater treatment plants. Estimated loading rates of ARGs to soil under a scenario of land application were determined, highlighting in all cases that they are orders of magnitude higher than in the aqueous effluent. Livestock manure, derived from control cattle and cattle undergoing typical antibiotic treatment, and corresponding composts were also evaluated as common soil amendments in a separate study. In this study, the amendments were applied to two soil types in a greenhouse setting, in order to compare the resulting carriage of ARGs on a root (radish) versus leafy (lettuce) vegetable. Remarkably, radishes were found to harbor the highest relative abundance of total ARGs enumerated by metagenomics, even higher than corresponding soils or manures. Although the total microbial load will be lower on a harvested vegetable, the results suggest that the vegetable surface environment can differentially favor the survival of ARBs. The role of wastewater and water reuse treatment processes in reducing ARB and ARGs was also investigated at field-scale. Two independent wastewater treatment plants both substantially reduced total ARG relative and absolute abundance through biological treatment and settling according to metagenomic analysis. The subsequent water reuse treatment train of one system produced water for non- potable purposes and found further reduction in ARGs after chlorination, but a five hundred percent increase in the relative abundance of ARGs in the subsequent distribution system. In the second plant, which employed a membrane-free ozone-biologically-activated carbon-granular activated carbon treatment train for indirect potable reuse, there were notable increases in total ARG relative abundance following ozonation and chlorination. However, these numbers attenuated below background aquifer levels before recharge. Culture-based analysis of these systems targeting resistant ESKAPE pathogens (Escherichia coil, Staphylococcus aureus, Klebsiella spp., Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus spp.) indicated similar trends as the metagenomic ARG analysis for both systems, but was challenged by sub-optimal media for wastewater samples and low confirmation rates, limiting statistical analysis. In order to advance the application of NGS, molecular, and associated bioinformatic tools for monitoring pathogens and antibiotic resistance in environmental systems, newly emerging methods and field standards for antibiotic resistance assessment were also evaluated. Hybrid assembly, the assembly for both short and long metagenomic sequencing reads, were assessed with an in silico framework in order to determine which available assemblers produced the most accurate and long contigs. Hybrid assembly was found to produce longer and more accurate assemblies at all coverages by reducing error as compared to short read assembly, though the outputs differed in composition from long read assembly. Where it is possible, it is beneficial to sequence using both long- and short-read NGS technologies and employ hybrid assembly, but further validation is recommended. Genome resolved metagenomics has also emerged as a strategy to recover individual bacterial genomes from the mixed metagenomic samples though this is often not well validated. In order to address this, genomes were assembled from reclaimed water systems and were compared against whole-genome sequences of antibiotic resistant E.coli isolates. Metagenome-derived genomes were found to produce similar profiles in wastewater treatment plant influents. A final theme to this dissertation addresses the need to standardize targets, methodologies, and reporting of antibiotic resistance in the environment. A systematic literature review was conducted on assays for the enumeration of key ARGs across aquatic environments and recommendations are summarized for the production of comparable data. In sum, this dissertation advances knowledge about the occurrence of pathogens, ARB, and ARGs across aquatic and agricultural systems and across several countries. Advances are made in the application of NGS tools for environmental monitoring of antibiotic resistance and other targets and a path forward is recommended for continued improvement as both DNA sequencing technologies and computational methodologies continue to rapidly advance.
- Associations Between Drinking Water Source Watershed and Adverse Birth Outcomes in Central AppalachiaCornwell, Cameron Scott (Virginia Tech, 2022-06-30)In order to ensure clean drinking water for all, it is crucial to understand potential upland stressors that compromise the quality of source waters treated by local community water systems (CWSs). Contamination associated with specific types of land cover can result in downstream water quality degradation, which may reduce the effectiveness of treatment by CWSs. Surface mining has been hypothesized as a source of drinking water degradation within the Central Appalachian region, which may result in adverse exposures and health disparities. The purpose of this study was to identify potential correlations between land cover and adverse birth outcomes (ABOs) through the application of watershed epidemiology, an emerging environmental health paradigm. Birth records for the Central Appalachian region were acquired from their respective state health departments from 2001 to 2015: each record contained the mother's street address, outcome variables, and covariates. Records were included in later analyses if they fell within an approximated CWS service area. Contributing land cover to each CWS was determined via previously delineated watersheds that relied on CWS intake points. A binomial generalized linear model was used to compare low birth weight (LBW), term low birth rate (tLBW), and preterm birth (PTB) incidence to CWS source watershed land cover, Safe Drinking Water Act (SDWA) violations, CWS size, and covariates related to the birth records. Source watershed mining and SDWA health based (HB) violations were significantly associated with greater risks for preterm birth (PTB) and low birth weight (LBW). Future work should be conducted to explore upstream flow impacts, address missing data in the birth records, and to more accurately represent CWS service areas to better characterize exposure.
- Associations between Fecal Indicator Bacteria Prevalence and Demographic Data in Private Water Supplies in VirginiaSmith, Tamara L. (Virginia Tech, 2013-06-12)Over 1.7 million Virginians rely on private water systems to supply household water. The heaviest reliance on these systems occurs in rural areas, which are often underserved in terms of financial resources and access to environmental health education. As the Safe Drinking Water Act (SDWA) does not regulate private water systems, it is the sole responsibility of the homeowner to maintain and monitor these systems. Previous limited studies indicate that microbial contamination of drinking water from private wells and springs is far from uncommon, ranging from 10% to 68%, depending on type of organism and geological region. With the exception of one thirty-year old government study on rural water supplies, there have been no documented investigations of links between private system water contamination and household demographic characteristics, making the design of effective public health interventions, very difficult. The goal of the present study is to identify potential associations between concentrations of fecal indicator bacteria (e.g. coliforms, E. coli) in 831 samples collected at the point-of-use in homes with private water supply systems and homeowner-provided demographic data (e.g. homeowner age, household income, education, water quality perception). Household income and the education of the perceived head of household were determined to have an association with bacteria concentrations. However, when a model was developed to evaluate strong associations between total coliform presence and potential predictors, no demographic parameters were deemed significant enough to be included in the final model. Of the 831 samples tested, 349 (42%) of samples tested positive for total coliform and 55 (6.6%) tested positive for E. coli contamination. Chemical and microbial source tracking efforts using fluorometry and qPCR suggested possible E. coli contamination from human septage in 21 cases. The findings of this research can ultimately aid in determining effective strategies for public health intervention and gain a better understanding of interactions between demographic data and private system water quality.
- Biochar and pH as Drivers of Greenhouse Gas Production in Denitrification SystemsDavis, James Martin IV (Virginia Tech, 2016-01-05)Nitrous oxide (N2O) is a greenhouse gas (GHG) with 300 times the radiative forcing in the atmosphere of carbon dioxide (CO2), and has recently become a subject of great concern because the nitrogen (N) fertilizers which have been necessary to increase agricultural productivity have also dramatically increased N2O emissions from agroecosystems. Many N control practices have been suggested and implemented in agroecosystems, but their ability to simultaneously remove reactive N from the environment and prevent the production of N2O is, at best poorly understood. The goal of this work is to characterize environmental controls on production of N2O in denitrifying bioreactors. The review portion of this work first discusses the geologic history of the N cycle, how its past and present processes differ, and how it is being affected by human activity. It then explores the N cycle's biochemical pathways, reviews the controls for each of its steps, and discusses the environmental drivers of these controls. The review closes with a discussion of environmental N management strategies. The experimental portion of this work further explores these concepts by observing how biochar amendment and the modification of pH affect N2O production in the denitrification pathway in denitrifying bioreactors. Both pH and biochar have previously been shown to affect N2O production and many N management practices utilize biochar or manipulate pH to increase N retention. The objectives of the experiment were to: 1) Examine headspace N2O concentration in sealed, biochar-amended, denitrifying bioreactors; 2) Determine if the effects of pH on N2O production differ in biochar-amended systems versus controls (under acidic, unbuffered, and buffered conditions); 3) Quantify key denitrification genes (nirK, nirS, nosZ) in each treatment combination. Experimental results showed biochar treatment to significantly increase N2O emissions, a result which runs contrary to most, but not all studies regarding its effects on N2O production. Differences between treatments decreased with increasing pH levels. Biochar did not exhibit significant effects on individual denitrification genes, but it did show influence on the ratios of their populations. On the other hand, pH was found to have significant effects on nirS and nosZ populations. Differences in N2O production between biochar and controls were thus explained by biochar's chemical effects, likely its ability to increase denitrification activity. Developing an understanding of the mechanisms behind these differences will require using a combination of isotope tracing, enzyme assays, and mass balance approaches. Future microbial work in biochar-amended systems should attempt to characterize differences in gene expression, overall community structure, and long-term population trends in the genes of interest. The combination of these approaches should allow researchers to better predict where N2O production will occur and develop strategies to mitigate it while simultaneously increasing food production to meet the demands of a growing population.
- Bottled and Well Water Quality in a Small Central Appalachian Community: Household-Level Analysis of Enteric Pathogens, Inorganic Chemicals, and Health Outcomes in Rural Southwest VirginiaCohen, Alasdair; Rasheduzzaman, Md; Darling, Amanda; Krometis, Leigh-Anne H.; Edwards, Marc A.; Brown, Teresa; Ahmed, Tahmina; Wettstone, Erin; Pholwat, Suporn; Taniuchi, Mami; Rogawski McQuade, Elizabeth T. (MDPI, 2022-07-15)Consumption of unsafe drinking water is associated with a substantial burden of disease globally. In the US, ~1.8 million people in rural areas lack reliable access to safe drinking water. Our objective was to characterize and assess household-level water sources, water quality, and associated health outcomes in Central Appalachia. We collected survey data and water samples (tap, source, and bottled water) from consenting households in a small rural community without utility-supplied water in southwest Virginia. Water samples were analyzed for physicochemical parameters, total coliforms, E. coli, nitrate, sulfate, metals (e.g., arsenic, cadmium, lead), and 30+ enteric pathogens. Among the 69% (n = 9) of households that participated, all had piped well water, though 67% (n = 6) used bottled water as their primary drinking water source. Total coliforms were detected in water samples from 44.4% (n = 4) of homes, E. coli in one home, and enteric pathogens (Aeromonas, Campylobacter, Enterobacter) in 33% (n = 3) of homes. Tap water samples from 11% (n = 1) of homes exceeded the EPA MCL for nitrate, and 33% (n = 3) exceeded the EPA SMCL for iron. Among the 19 individuals residing in study households, reported diarrhea was 25% more likely in homes with measured E. coli and/or specific pathogens (risk ratio = 1.25, cluster-robust standard error = 1.64, p = 0.865). Although our sample size was small, our findings suggest that a considerable number of lower-income residents without utility-supplied water in rural areas of southwest Virginia may be exposed to microbiological and/or chemical contaminants in their water, and many, if not most, rely on bottled water as their primary source of drinking water.
- The Challenges and Opportunities in Monitoring and Modeling Waterborne Pathogens in Water- and Resource-Restricted Africa: Highlighting the critical need for multidisciplinary research and tool advancementHolcomb, Megan Kathleen (Virginia Tech, 2014-01-22)Water is a primary shared resource that connects all species across the landscape and can facilitate shared exposure to a community of waterborne pathogens. Despite remarkable global progress in sanitation and hygiene development in the past two decades, infectious diarrhea remains a prominent public health threat in sub-Saharan Africa. This thesis identifies and discusses persistent challenges limiting the success of current waterborne disease management strategies and several existing research hurdles that continue to impede characterization of microbial transmission and transport. In this work, the Chobe River watershed in Northern Botswana serves as a target study site for the application of hydrological modeling tools to quantify emergent water quality and health challenges in Southern Africa. A watershed model with extensive data requirements, the Hydrological Simulation Program – Fortran (HSPF), is used to identify primary data gaps and model assumptions that limit the progress of model development, and guide opportunities for data collection, tool development, and research direction. Environmental pathogen exposure risk and epidemiological outbreak dynamics are best described by interactions between the coupled human and environmental processes within a system. The challenge of reducing diarrheal disease incidence strengthens a call for research studies and management plans that join multiple disciplines and consider a range of spatiotemporal scales.
- Characterization of opportunistic Pathogens in Drinking Water Supplied by Private WellsMapili, Kristine Irene Manzano (Virginia Tech, 2019-07-03)Private wells are understudied potential sources of opportunistic pathogen (OP) infections. OPs, including Legionella and Mycobacterium, are of particular concern for immunocompromised individuals and are known to proliferate in drinking water systems. Much of our knowledge surrounding OP occurrence and growth in drinking water relates to municipal drinking water systems, which primarily use surface water sources and are always treated with primary and secondary disinfection in United States. However, OP occurrence and growth in private wells is not well understood and it is unclear how the knowledge developed in municipal systems will translate to private well systems with rare and infrequent exposure to chemical disinfectants. In addition, because private wells are more susceptible to microbial contamination than municipal systems, the impact of flooding on OP occurrence is of particular concern. Two private well field surveys were conducted to document the incidence of OPs in private well systems. One survey conducted in North Carolina private wells with no history of recent flooding was focused on molecular and culture-based detection of Legionella spp. and Legionella pneumophila. The other survey was a broader molecular (i.e., DNA-based) characterization of the incidence of Legionella spp., L. pneumophila, Mycobacterium spp., Mycobacterium avium (the most commonly nontuberculous mycobacteria associated with disease), and Naegleria fowleri in private wells with recent history of flooding (i.e., Hurricanes Harvey and Irma in 2017, or the Great Louisiana Floods in 2016, extending to Texas, Florida, and Louisiana). All samples in both studies were analyzed for total bacterial 16S rRNA genes, indicator bacteria (e.g., total coliform and Escherichia coli) and inorganic constituents. Information about well system characteristics were obtained through questionnaires sent to participating residents. Widespread detection of OP DNA markers were noted in the flooded well survey. Legionella spp. (detectable in 50-100% of well waters, depending on the flood event) and Mycobacterium spp. (detectable in 13.2-45.0% of well waters) were the most commonly detected among the OPs targets. At the genus level, L. pneumophila (7.9-65.5%) and M. avium (7.9-32.5%) were less commonly detected, but still highly variable. It is not possible to judge whether these OP levels were elevated as a result of the flooding because the sampling was carried out as an emergency response and background levels were not previously tested. Also of interest was whether well characteristics could predict OP levels, including well depth, well type, or treatment. However, none of these emerged as significant predictors of OP detection frequency or levels. Similarly, these OP DNA markers were not elevated in homes reporting submerged wellheads or system damage, suggesting that detection of these OPs is more dependent on the groundwater that supplies these private wells than influx of contaminated surface water. The incidence of DNA markers pertaining to N. fowleri, the "brain eating amoeba" that causes rare incidences of primary amebic meningoencephalitis (PAM), tended to be lower (5.0-12.7%) than that of other OPs targeted, but was more frequently detected in wells reporting submerged well heads, suggesting its occurrence was related to contamination from flood water. A positive association between total bacteria and occurrence of both Legionella spp. and Mycobacterium spp., was observed in private wells of all surveyed areas, contrary to observations in municipal drinking water systems with secondary disinfectant residuals. On the other hand, Legionella reportedly has an optimal growth range of 20-42 °C in municipal systems and recent surveys of municipal systems reported a strong association between Legionella spp. and temperature that was not observed for private wells in this study. We speculate that the essentially "infinite" water age and lack of disinfectant for well water, may contribute to these differences relative to municipal water supplies. The results presented in this work are likely an overestimation of OPs numbers in private wells, as molecular detection of OPs does not distinguish between live and dead cells. In addition, sample sizes were limited by laboratory throughput and budget. Identifying key variables impacting the occurrence of OPs in private wells, given that our study shows that these pathogens are relatively common, might someday help limit the risk of infections.
- Characterizing Waterborne Lead in Private Water SystemsPieper, Kelsey J. (Virginia Tech, 2015-07-21)Lead is a common additive in plumbing components despite its known adverse health effects. Recent research has attributed cases of elevated blood lead levels in children and even fetal death with the consumption of drinking water containing high levels of lead. Although the federal Environmental Protection Agency (USEPA) strives to minimize lead exposure from water utilities through the Lead and Copper Rule (LCR), an estimated 47 million U.S. residents reliant on private unregulated water systems (generally individual and rural) are not protected. Detection, evaluation, and mitigation of lead in private systems is challenging due to lack of monitoring data, appropriate sampling protocols, and entities to fund research. Through a statewide sampling survey, over 2,000 homeowners submitted water samples for analysis. This survey documented that 19% of households had lead concentrations in the first draw sample (i.e., 250 mL sample collected after 6+ hours of stagnation) above the EPA action level of 15, with concentrations as high as 24,740. Due to the high incidence observed, this research focused on identifying system and household characteristics that increased a homeowner's susceptibility of lead in water. However, 1% of households had elevated lead concentrations after flushing for five minutes, which highlighted potential sources of lead release beyond the faucet. Therefore, a follow-up study was conducted to investigate sources and locations of lead release throughout the entire plumbing network. Using profiling techniques (i.e., sequential and time series sampling), three patterns of waterborne lead release were identified: no elevated lead or lead elevated in the first draw of water only (Type I), erratic spikes of particulate lead mobilized from plumbing during periods of water use (Type II), and sustained detectable lead concentrations (>1 ) even with extensive flushing (Type III). Lastly, emphasis was given to understand potential lead leaching from NSF Standard 61 Section 9 certified lead-free plumbing components as the synthetic test water is not representative of water quality observed in private water systems. Overall, this dissertation research provides insight into a population that is outside the jurisdiction of many federal agencies.
- Clean water for all: The demographics of urban and rural safe drinking water challenges in Virginia, USA and San Rafael Las Flores, GuatemalaMarcillo, Cristina Elizabeth (Virginia Tech, 2020-04-14)The United Nations established Sustainable Development Goal 6, universal access to safely managed drinking water and sanitation service, as a global goal for 2030. In rural areas, access lags significantly and progress is rarely examined concurrently between developed and developing nations. Therefore, this dissertation focuses on rural water system challenges in a developed nation, the US, and a developing nation, Guatemala. In the US, approximately 250 million Americans receive drinking water from community water systems (CWSs), theoretically safeguarded by the Safe Drinking Water Act (SDWA). There is mounting evidence that racial, ethnic, and socioeconomic disparities persist in US drinking water access and quality, but studies are limited by the exclusion of very small CWSs and a large geographic unit of analysis. A novel geospatial methodology was created to delineate system service areas at the zip code scale in Virginia and assess the influence of demographic characteristics on compliance with the SDWA from 2006 to 2016. Results reveal that monitoring and reporting violations are concentrated in private, rural systems that serve fewer than 500 people, while health-based violations were more likely in non-white communities, specifically those with higher proportions of Black, Native Hawaiian, and other Pacific Islanders. This study was completed in parallel with a household sampling campaign in rural San Rafael Las Flores, Guatemala. In Guatemala, no public access to water system compliance or quality information currently exists. With growing investment in mining industries and recognized naturally occurring arsenic in volcanic geology, citizens are eager for drinking water information. Survey results highlighted dissatisfaction with and distrust in most tap water sources. Consequently, residents regularly buy bottled water or collect water from untreated natural springs. Water quality results indicated that tap water from the central drinking water treatment plant contained higher levels of arsenic and other contaminants, when compared to most other sources. Though the settings are quite different, parallel investigation of rural drinking water system challenges in the US and Guatemala reveal common challenges and lessons. Moving forward, all nations would benefit from standard monitoring of drinking water access, quality, and compliance that allowed for intersectional investigations of environmental health inequities.
- Development of a Risk Assessment Model to Assess TMDL Implementation StrategiesJocz, Robert Michael (Virginia Tech, 2012-06-18)High levels of fecal indicator bacteria (e.g. E. coli) are the leading cause of identified surface water impairments in the United States. The US Clean Water Act of 1972 requires that jurisdictions establish priority rankings for impaired waterways and develop a Total Maximum Daily Load (TMDL) plan for each. Although past research indicates that the risk of illness to humans varies by source of fecal contamination, current watershed assessments are developed according to total concentration of indicator bacteria, with all sources weighed equally. A stochastic model using Quantitative Microbial Risk assessment (QMRA) principles to translate source-specific (e.g. human, livestock) daily average concentrations of E.coli into a daily average risk of gastroenteritis infection was developed and applied to Pigg River, an impaired watershed in southern Virginia. Exposure was calculated by multiplying a ratio of source related reference pathogens to predicted concentrations of E.coli and a series of qualifying scalars. Risk of infection was then determined using appropriate dose response relationships. Overall, human and goose sources resulted in the greatest human health risk, despite larger overall E.coli loading associated with cattle. Bacterial load reductions specified in the Pigg River TMDL were applied using Hydrological Simulation Program- FORTRAN (HSPF) to assess the effect these reductions would have on the risk of infection attributed to each modeled bacterial source. Although individual risk sources (neglecting geese) were reduced below the EPA limit of 8 illnesses per 1000 exposures, the combined risk of illness varied between 0.006 and 64 illnesses per 1000 exposures.
- Does it pay to be mature? Assessing the performance of a mature bioretention cell seven years post-constructionWillard, Lory Lee (Virginia Tech, 2014-10-29)Bioretention cells (BRCs) are low-impact development stormwater management structures that integrate water quantity and quality management. Although BRCs have a predicted design life of about 25 years, most current research focuses on performance of cells less than two years old. This project evaluated the effectiveness of a BRC installed in 2007 to treat a 0.16-ha parking lot in Blacksburg, VA. After installation, this BRC was monitored for five months to determine initial flow reduction and total suspended solids, and nutrient removal. By monitoring for the same parameters, changes in cell performance since installation were quantified. ISCO automated stormwater samplers collected inflow and outflow composite samples from the cell, which were then analyzed for fecal indicator bacteria (total coliforms, E. coli, and enterococci), total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP). To determine if denitrification is occurring within the BRC, media samples taken throughout the cell were analyzed using qPCR. The bioretention media was also sampled to quantify changes in media nutrient content and particle size over the past seven years. Results indicate the bioretention media has not accumulated nitrogen and phosphorus since installation, and that the BRC remains effective at reducing flow volume and peak flow rates, as well as TSS, TN, TP, total coliforms, E. coli, and enterococci loads. Bacterial analysis of the media show most of the denitrifiers are present in the top layers of the bioretention media, despite an internal water storage layer and the bottom of the cell designed specifically for denitrification.
- Ecological and Human Health in Rural CommunitiesGohlke, Julia M.; Kolivras, Korine N.; Krometis, Leigh-Anne H.; Marmagas, Susan West; Marr, Linsey C.; Satterwhite, Emily M.; Angermeier, Paul L.; Clark, Susan F.; Ranganathan, Shyam; Schoenholtz, Stephen H.; Swarup, Samarth; Thompson, Christopher K. (2017-05-15)Environmental exposures to chemicals and microbes in the air we breathe, the water we drink, the food we eat, and the objects we touch are now recognized to be responsible for 90% of all human illness. This suggests that well-documented health disparities within and between nations have significant geographic and ecological as well as socioeconomic dimensions that must be addressed in order to secure human well-being at local to global scales. While urbanization is a primary driver of global change, it is widely acknowledged that urbanization is dependent on large-scale resource extraction and agriculture in rural communities. Despite considerable evidence linking human industrial and agricultural activities to ecological health (i.e. health of an ecosystem including the non-human organisms that inhabit it), very little data are available directly linking exposure to environmental pollution and human health in rural areas, which have repeatedly been identified as subject to the most extreme health disparities...
- Effect of Composting on the Prevalence of Antibiotic Resistant Bacteria and Resistance Genes in Cattle ManureWilliams, Robert Kyle (Virginia Tech, 2017-02-06)Antibiotic resistance is a growing human health threat, making infections more difficult to treat and increasing fatalities from and cost of treatment of associated diseases. The rise of multidrug resistant pathogens threatens a return to the pre-antibiotic era where even the most common infections may be impossible to treat. It is estimated that the majority of global antibiotic use, and use in the U.S., is dedicated towards livestock, where they are used to promote growth, treat, or prevent disease. Given that exposure to antibiotics selects for antibiotic resistant bacteria (ARBs) and can stimulate the horizontal transfer of their associated antibiotic resistance genes (ARGs), it is important to examine livestock operations as a reservoir of resistance. Correspondingly, there is growing interest in identifying how agricultural practices can limit the potential for spread of antibiotic resistance through the "farm to fork continuum," starting with antibiotic use practices, manure management and land application and ending with the spread of ARBs and ARGs present onto edible crops and serving as a route of exposure to consumers. This study focused specifically on the effect of composting on the prevalence of ARBs and ARGs in cattle manure. Three composting trials were performed: small-scale, heat-controlled, and large-scale. The small-scale composting trial compared dairy and beef manures, with or without antibiotic treatment (treated beef cattle received chlortetracycline, sulfamethazine, and tylosin while treated dairy cattle received cephapirin and pirlimycin), subject to either static or turned composting. The heat-controlled composting trial examined only dairy manure, with or without antibiotic treatment, subject to static composting, but using external heat tape applied to the composting tumblers to extend the duration of the thermophilic (>55°C) temperature range. The large-scale composting trial examined dairy manure, with or without antibiotic treatment, subject to static composting at a much larger scale that is more realistic to typical farm practices. Samples were analyzed to assess phenotypic resistance using the Kirby Bauer disk diffusion method and by diluting and plating onto antibiotic-supplemented agar. Genetic markers of resistance were also assessed using quantitative polymerase chain reaction (qPCR) to quantify sul1 and tet(W) ARGs; metagenomic DNA sequencing and analysis were also performed to assess and compare total ARG abundance and types across all samples. Results indicate that composting can enrich indicators of phenotypic and genetic resistance traits to certain antibiotics, but that most ARGs are successfully attenuated during composting, as evidenced by the metagenomic sequencing. Maintaining thermophilic composting temperatures for adequate time is necessary for the effective elimination of enteric bacteria. This study suggests that indicator bacteria that survive composting tend to be more resistant than those in the original raw manure; however, extending the thermophilic stage of composting, as was done in the heat-controlled trial, can reduce target indicator bacteria below detection limits. Of the two ARGs specifically quantified via qPCR, prior administration of antibiotics to cattle only had a significant impact on tet(W). There was not an obvious difference in the final antibiotic resistance profiles in the finished beef versus dairy manure composts according to metagenomics analysis. Based on these results, composting is promising as a method of attenuating ARGs, but further research is necessary to examine in depth all of the complex interactions that occur during the composting process to maximize performance. If not applied appropriately, e.g., if time and temperature guidelines are not enforced, then there is potential that composting could exacerbate the spread of certain types of antibiotic resistance.
- Effect of concentration of glutaraldehyde and glyoxal on binding lysozyme to zein based films to control foodborne pathogens in tomatoesRichter, Kevin (Virginia Tech, 2012-02-16)The demand for biodegradable packaging materials as an alternative to synthetic ones to reduce environmental cost has seen an increase in recent years. In addition, functionalizing the packaging film to provide specific advantages like antimicrobial properties has yet to be explored thoroughly. This study considers adding antimicrobial agents to improve the quality and safety of actively packaged fresh produce using an antimicrobial enzyme (lysozyme) immobilized on a biopolymer based packaging film (corn-zein). The developed packaging material is aimed as an active biodegradable packaging to reduce bacterial contamination on the surface of fresh organic produce, specifically tomatoes. The study uses glutaraldehyde and glyoxal as binding agents to immobilize the enzyme on the packaging film. The effect of concentration of glutaraldehyde and glyoxal on the controlled release of the enzyme was studied. Concentrations of 0.1 and 0.2 g/g lysozyme: cross linking agent had controlled release properties. However, concentrations of 0 or 0.05 are about 20-30% more effective at inactivating bacteria. Antimicrobial activity in the constructed zein films are also tested against selected pathogens (Salmonella Newport and Listeria monocytogenes). Developed zein based film is tested against inoculated tomatoes to determine the efficacy of the films in reducing the pathogen population. The inoculated tomatoes are stored at room temperature over a storage period of one week. The film was able to reduce Listeria monocytogenes population by three logs but was unable to reduce the population of Salmonella Newport.