VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

The Challenges and Opportunities in Monitoring and Modeling Waterborne Pathogens in Water- and Resource-Restricted Africa: Highlighting the critical need for multidisciplinary research and tool advancement

TR Number

Date

2014-01-22

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Water is a primary shared resource that connects all species across the landscape and can facilitate shared exposure to a community of waterborne pathogens. Despite remarkable global progress in sanitation and hygiene development in the past two decades, infectious diarrhea remains a prominent public health threat in sub-Saharan Africa. This thesis identifies and discusses persistent challenges limiting the success of current waterborne disease management strategies and several existing research hurdles that continue to impede characterization of microbial transmission and transport. In this work, the Chobe River watershed in Northern Botswana serves as a target study site for the application of hydrological modeling tools to quantify emergent water quality and health challenges in Southern Africa. A watershed model with extensive data requirements, the Hydrological Simulation Program – Fortran (HSPF), is used to identify primary data gaps and model assumptions that limit the progress of model development, and guide opportunities for data collection, tool development, and research direction. Environmental pathogen exposure risk and epidemiological outbreak dynamics are best described by interactions between the coupled human and environmental processes within a system. The challenge of reducing diarrheal disease incidence strengthens a call for research studies and management plans that join multiple disciplines and consider a range of spatiotemporal scales.

Description

Keywords

Botswana, Chobe River, climate change, diarrheal disease, disease transmission, dryland, HSPF, pathogen transport, semi-arid, southern Africa, Water quality, waterborne disease, watershed model

Citation

Collections