Browsing by Author "Lattimer, Brian Y."
Now showing 1 - 20 of 85
Results Per Page
Sort Options
- Advanced Computing and Sensing to Improve Mine Fire Characterization and ResponseBarros Daza, Manuel Julian (Virginia Tech, 2022-01-13)After fire is discovered in an underground coal mine, a decision must be made to mitigate fire consequences. The decision should be made based on existing conditions, with the goal of increasing the probability of fire extinguishing without compromising the health and safety of the firefighting personnel. However, the determination of fire conditions can be difficult due to coarse in-situ measurements, fire hazards, and the large domains of interest. Additionally, CFD and network models used for predicting fire conditions are computationally expensive with long simulation processing times for informing real-time decision making. A new generalized procedure to design artificial neural networks (ANNs) capable of making predictions of fire conditions, performing hazard/risk assessment, and providing useful information to the firefighters is presented and applied to different underground coal mine fire scenarios. The feed-forward ANNs were developed to classify fires so as to provide the best firefighting decision and determine useful information in real time, such as response time and fire size. The networks were trained to make predictions on different mine locations and to use only available and measurable information in underground coal mines as inputs. The data used for training and testing the networks was generated using high-fidelity CFD and network fire simulations. Additionally, this research presents the applicability of optical fiber sensing technology for continuous, distributed, and real-time sensing. This new technology could be used for collection of input parameters during ongoing fires, leading to improvement of the prediction performance of the ANNs developed. Finally, a new approach to simulate firefighting foam flow through gob areas is proposed and tested using experimental results obtained from a scaled down experimental setup.
- Application of Multi-Port Mixing for Passive Suppression of Thermo-Acoustic Instabilities in Premixed CombustorsFarina, Jordan T. (Virginia Tech, 2013-03-29)The utilization of lean premixed combustors has become attractive to designers of industrial gas turbines as a means of meeting strict emissions standards without compromising efficiency. Mixing the fuel and air prior to combustion allows for lower temperature flame zones, creating the potential for drastically reduced nitrous oxide emissions. While effective, these systems are commonly plagued by combustion driven instabilities. These instabilities produce large pressure and heat release rate fluctuations due to a resonant interaction between the combustor acoustics and the flame. A primary feedback mechanism responsible for driving these systems is the propagation of Fuel/Air Ratio (FAR) fluctuations into the flame zone. These fluctuations are formed inside of the premixing chamber when fuel is injected into and mixed with an oscillating air flow. The research presented here aimed to develop new technology for premixer designs, along with an application strategy, to avoid resonant thermo-acoustic events driven by FAR fluctuations. A passive fuel control technique was selected for investigation and implementation. The selected technique utilized fuel injections at multiple, strategically placed axial locations to target and inhibit FAR fluctuations at the dominant resonant mode of the combustor. The goal of this research was to provide an understanding of the mixing response inside a realistic premixer geometry and investigate the effectiveness of the proposed suppression technique. The mixing response was investigated under non-reacting flow conditions using a unique modular premixer. The premixer incorporated variable axial fuel injection locations, as well as interchangeable mixing chamber geometries. Two different chamber designs were tested: a simple annular chamber and one incorporating an axial swirler. The mixing response of the simple annular geometry was well characterized, and it was found that multiple injections could be effectively configured to suppress the onset of an unstable event at very lean conditions. Energy dense flame zones produced at higher equivalence ratios, however, were found to be uncontrollable using this technique. Additionally, the mixing response of the swirl geometry was difficult to predict. This was found to be the result of large spatial gradients formed in the dynamic velocity field as acoustic waves passed through the swirl vanes.
- Autonomous Fire Suppression Using Feedback Control for Robotic FirefightingMcNeil, Joshua G. (Virginia Tech, 2016-02-04)There is an increasing demand for robotics in dangerous and extreme conditions to limit human exposure and risk. An area in which robots are being considered as a support tool is in firefighting operations to reduce the number of firefighter injuries and deaths. One such application is to increase firefighting performance through localized fire suppression. This research focused on developing an autonomous suppression system for use on a mobile robotic platform. This included a real-time close proximity fire suppression approach, appropriate feature selection and probabilistic classification of water leaks and sprays, real-time trajectory estimation, and a feedback controller for error correction in longer-range firefighting. The close proximity suppression algorithm uses IR fire detection IR stereo processing to localize a fire. Feedback of the fire size and fire target was used to manipulate the nozzle for effective placement of the suppressant onto the fire and experimentally validated with tests in high and low visibility environments. To improve performance of autonomous suppression and for inspection tasks, identification of water sprays and leaks is a critical component. Bayesian classification was used to identify the features associated with water leaks and sprays in thermal images. Appropriate first and second order features were selected by using a multi-objective genetic algorithm optimization. Four textural features were selected as a method of discriminating water sprays and leaks from other non-water, high motion objects. Water classification was implemented into a real-time suppression system as a method of determining the yaw and pitch angle of a water nozzle. Estimation of the angle orientation provided an error estimate between the current path and desired nozzle orientation. A proportional-integral (PI) controller was used to correct for forced errors in fire targeting and performance and response was shown through indoor and outdoor suppression tests with wood-crib fires. The autonomous suppression algorithm was demonstrated through fire testing to be at least three times faster compared with suppression by an operator using tele-operation.
- Autonomous Navigation, Perception and Probabilistic Fire Location for an Intelligent Firefighting RobotKim, Jong Hwan (Virginia Tech, 2014-10-09)Firefighting robots are actively being researched to reduce firefighter injuries and deaths as well as increase their effectiveness on performing tasks. There has been difficulty in developing firefighting robots that autonomously locate a fire inside of a structure that is not in the direct robot field of view. The commonly used sensors for robots cannot properly function in fire smoke-filled environments where high temperature and zero visibility are present. Also, the existing obstacle avoidance methods have limitations calculating safe trajectories and solving local minimum problem while avoiding obstacles in real time under cluttered and dynamic environments. In addition, research for characterizing fire environments to provide firefighting robots with proper headings that lead the robots to ultimately find the fire is incomplete. For use on intelligent firefighting robots, this research developed a real-time local obstacle avoidance method, local dynamic goal-based fire location, appropriate feature selection for fire environment assessment, and probabilistic classification of fire, smoke and their thermal reflections. The real-time local obstacle avoidance method called the weighted vector method is developed to perceive the local environment through vectors, identify suitable obstacle avoidance modes by applying a decision tree, use weighting functions to select necessary vectors and geometrically compute a safe heading. This method also solves local obstacle avoidance problems by integrating global and local goals to reach the final goal. To locate a fire outside of the robot field of view, a local dynamic goal-based 'Seek-and-Find' fire algorithm was developed by fusing long wave infrared camera images, ultraviolet radiation sensor and Lidar. The weighted vector method was applied to avoid complex static and unexpected dynamic obstacles while moving toward the fire. This algorithm was successfully validated for a firefighting robot to autonomously navigate to find a fire outside the field of view. An improved 'Seek-and-Find' fire algorithm was developed using Bayesian classifiers to identify fire features using thermal images. This algorithm was able to discriminate fire and smoke from thermal reflections and other hot objects, allowing the prediction of a more robust heading for the robot. To develop this algorithm, appropriate motion and texture features that can accurately identify fire and smoke from their reflections were analyzed and selected by using multi-objective genetic algorithm optimization. As a result, mean and variance of intensity, entropy and inverse difference moment in the first and second order statistical texture features were determined to probabilistically classify fire, smoke, their thermal reflections and other hot objects simultaneously. This classification performance was measured to be 93.2% accuracy based on validation using the test dataset not included in the original training dataset. In addition, the precision, recall, F-measure, and G-measure were 93.5 - 99.9% for classifying fire and smoke using the test dataset.
- Bench Scale Characterization of Joints and CoatingsKulkarni, Akhilesh (Virginia Tech, 2023-07-03)The ASTM E119 is a large-scale test used to qualify assemblies for fire resistance, including heat transmission and structural integrity. The test requires specialized furnaces and full-scale assemblies that are 3.0 m (10 ft) or more on each side, making it very expensive to perform. In this study, we investigated the feasibility of the scaling methodology for a reduced-scale fire resistance test on different types of wood-based structures, specifically commercially available intumescent coating applied onto wood and bolted lap joints in wood. We build upon a previously developed scaling methodology for wood and gypsum boards, which integrated geometric scaling, Fourier number time scaling, and furnace boundary condition matching. Intumescent coating presents a particular challenge in scaling in that it expands when exposed to fire conditions. To account for this expansion, we identified a relationship between initial dry film thickness and final expanded thickness through cone calorimeter tests and integrated it into a modified scaling methodology. This approach was then validated through fire exposure tests in furnace on wood samples painted with intumescent coating at full, half, and quarter scales. Finally, we demonstrated the scaling laws for joints under combined thermo-structural loading, by subjecting wood-based half-lap joint samples to combined bending and thermal loading at half and quarter scale. The samples were subjected to static three-point bending with the load scaled to achieve structural similitude, while simultaneously being exposed to a scaled fire exposure on the bottom surface. Our study provides insights into the practical application of scaling methodology for testing the fire resistance of joints and fire-resistant coated wood, paving the way for more cost-effective and quicker fire testing for the wood-based composite industry.
- Burnthrough Modeling of Marine Grade Aluminum Alloy Structural Plates Exposed to FireRippe, Christian M. (Virginia Tech, 2015-11-13)Current fire induced burnthrough models of aluminum typically rely solely on temperature thresholds and cannot accurately capture either the occurrence or the time to burnthrough. This research experimentally explores the fire induced burnthrough phenomenon of AA6061-T651 plates under multiple sized exposures and introduces a new burnthrough model based on the near melting creep rupture properties of the material. Fire experiments to induce burnthrough on aluminum plates were conducted using localized exposure from a propane jet burner and broader exposure from a propane sand burner. A material melting mechanism was observed for all localized exposures while a material rupture mechanism was observed for horizontally oriented plates exposed to the broader heat flux. Numerical burnthrough models were developed for each of the observed burnthrough mechanisms. Material melting was captured using a temperature threshold model of 633 deg C. Material rupture was captured using a Larson-Miller based creep rupture model. To implement the material rupture model, a characterization of the creep rupture properties was conducted at temperatures between 500 and 590 deg C. The Larson-Miller curve was subsequently developed to capture rupture behavior. Additionally, the secondary and tertiary creep behavior of the material was modeled using a modified Kachanov-Rabotnov creep model. Thermal finite element model accuracy was increased by adapting a methodology for using infrared thermography to measure spatially and temporally varying full-field heat flux maps. Once validated and implemented, thermal models of the aluminum burnthrough experiments were accurate to 20 deg C in the transient and 10 deg C in the steady state regions. Using thermo-mechanical finite element analyses, the burnthrough models were benchmarked against experimental data. Utilizing the melting and rupture mechanism models, burnthrough occurrence was accurately modeled for over 90% of experiments and modeled burnthrough times were within 20% for the melting mechanism and 50% for the rupture mechanism. Simplified burnthrough equations were also developed to facilitate the use of the burnthrough models in a design setting. Equations were benchmarked against models of flat and stiffened plates and the burnthrough experiments. Melting mechanism burnthrough time results were within 25% of benchmark values suggesting accurate capture of the mechanism. Rupture mechanism burnthrough results were within 60% of benchmark values.
- Carbon Monoxide Generation and Transport from Compartment FiresWieczorek, Christopher John (Virginia Tech, 2003-05-23)The aim of the present research was to gain a better understanding of the species generation and transport from enclosure fires. The species generation experiments were conducted with a half-scale ISO 9705 enclosure with three different ventilation conditions and heat release rates ranging from 50 kW to 500 kW. The transport study was conducted with a 6.1 m long hallway connected to the compartment in a head-on configuration. All measurements were performed at the compartment or hallway exit plane during the steady-state period of the fire. Measurements included species mole fractions of oxygen, carbon dioxide, carbon monoxide, and unburned hydrocarbons, along with gas pressure (used to determine gas velocities) and gas temperatures. Species mappings performed at the exit plane of the compartment indicated that the exiting species are not spatially uniform. Horizontal and vertical gradients in the species mole fractions were observed for all ventilation conditions and heat release rates examined. Predictive techniques developed previously were applied to the data obtained in the present study and were determined to be inappropriate for situations were the plume equivalence ratio was not equal to the global equivalence ratio. A new methodology for predicting species levels at the exit plane of an enclosure was developed. The proposed methodology correlates the species yields based on the combustion within the compartment as a function of a non-dimensional heat release rate. The non-dimensional heat release rate is based on the fuel load and geometrical parameters of the enclosure. The present methodology in applicable to situations where a well-mixed uniform layer is not present and the overall global conditions are of interest. Species transport to remote locations was also examined. Experiments were conducted with the baseline ventilation at x = 0 m (the compartment/hallway interface) and three different ventilation conditions at x = 6.1 m (end of hallway). The three ventilation conditions consisted of the narrow, baseline, and wide doorways. Experiments were conducted for heat release rates of 85 kW, 127 kW, and 150 kW. The results from the tests indicated that, for over-ventilated compartment fires, the hallway and hallway ventilation had no impact on the species generation within the compartment. This allows the correlations developed from the compartment study to be applied to more complex scenarios. Differences in species mole fractions between x = 0 m and x = 6.1 m were shown to be a result of air entrainment into the upper layer within the hallway, which acted as a dilutent or as a source of oxygen for further oxidation reactions. For non-dimensional heat release rates less than 1.0, the reduction in carbon monoxide levels along the hallway was a result of dilution, while for non-dimensional heat release rates greater than or equal to 1.0 the reduction in carbon monoxide levels along the hallway was a combination of dilution and further oxidation reactions.
- Carbon Monoxide Generation in a Compartment With a Doorway During a FireMcKay, Christopher A. (Virginia Tech, 2002-02-04)The study of the products of combustion continues to have real-world relevance since the primary cause of death in building fires is smoke inhalation, with the majority of deaths from carbon monoxide, CO, poisoning. An experimental study was conducted to examine upper-layer structure plus provide an initial characterization of a new compartment with a doorway. An additional study of the relationship between heat flux from external burning in a hallway and levels of carbon monoxide is also reported. Tests were conducted in a new ½ scale ISO compartment with a fully scaled doorway, using n-hexane pool fires within the center of the compartment. Upper-layer sampling at eight locations in the compartment has shown that the compartment upper-layer is relatively uniform in species mole fractions, yields, and temperature. Sampling in the front upper-layer of the compartment was performed for a series of experiments where the equivalence ratio was varied. Temperatures, species mole fractions, species yields, and doorway flows were found to have definite trends, which agreed with previous studies. The heat flux study utilized a reduced scale compartment with a separate inlet and an exit vent, which connected into the side of an attached hallway, forming an L-shape. For two cases of a deep and shallow hallway upper-layer a direct relationship between flames in the upper-layer and total heat flux was measured. High heat flux was found to only denote those areas were flames are present and is not related to the levels of CO present or oxidized in the hallway.
- Compression Failure of Aluminum Plates Exposed to Constant Heat FluxFogle, Emily Johanna (Virginia Tech, 2010-05-05)Aluminum is used as a structural member in marine applications because of its low weight. One challenge is to design against failure of aluminum structures in fire. A parametric study was performed to quantify the effects of parameters on the compression failure of aluminum plates during a fire. A thermo-structural apparatus was designed to perform compression tests on aluminum samples consisting of a compression load frame, a hydraulic system, and electric heaters. The effect of dimensional variation on failure behavior was examined. Aluminum 5083 and 6082 alloys were tested with three thicknesses, two lengths and two widths. Three heat fluxes and various buckling stresses were used. Micro Vicker's hardness values were measured before and after testing to quantify the effect of heating on the strength of the aluminum. In general, lower applied stress resulted in higher failure temperature and longer time to failure. Dimensional variations had a negligible effect on failure behavior. The 5083 alloy has a minimum stress level of 50% of the buckling stress at 10kW/m2 and 10% of the buckling stress at 20kW/m2, while the 6082 alloy has a minimum stress level of 75% of the buckling stress at 10kW/m2 and 25% of the buckling stress at 20kW/m2. The 6082 failed at higher temperatures and longer failure times than the 5083. The presence of insulation on the exposed surface decreased the temperature rise, resulting in longer failure times. Vicker's hardness decreased with heating in general. The results describe the effects of parameters of the failure of aluminum.
- Computational Simulation of Coal Gasification in Fluidized Bed ReactorsSoncini, Ryan Michael (Virginia Tech, 2017-08-24)The gasification of carbonaceous fuel materials offers significant potential for the production of both energy and chemical products. Advancement of gasification technologies may be expedited through the use of computational fluid dynamics, as virtual reactor design offers a low cost method for system prototyping. To that end, a series of numerical studies were conducted to identify a computational modeling strategy for the simulation of coal gasification in fluidized bed reactors. The efforts set forth by this work first involved the development of a validatable hydrodynamic modeling strategy for the simulation of sand and coal fluidization. Those fluidization models were then applied to systems at elevated temperatures and polydisperse systems that featured a complex material injection geometry, for which no experimental data exists. A method for establishing similitude between 2-D and 3-D multiphase systems that feature non-symmetric material injection were then delineated and numerically tested. Following the development of the hydrodynamic modeling strategy, simulations of coal gasification were conducted using three different chemistry models. Simulated results were compared to experimental outcomes in an effort to assess the validity of each gasification chemistry model. The chemistry model that exhibited the highest degree of agreement with the experimental findings was then further analyzed identify areas of potential improvement.
- Computational Study of Highway Bridges Structural Response Exposed to a Large Fire ExposureNahid, Mohammad N. (Virginia Tech, 2015-07-08)The exposure from a localized vehicle fire has been observed to produce excessive damage onto highway bridge structural elements including complete collapse of the infrastructure. The occurrence of a fire beneath a bridge can lead to significant economic expense and loss of service even if the bridge does not collapse. The focus of the current research is to assess and evaluate the effect of realistic localized fire exposures from vehicles on the bridge structural integrity and to guide future development of highway bridge design with improved fire resistance. In this research, the bridge structural element response was predicted through a series of three loosely coupled analyses: fire analysis, thermal analysis, and structural analysis. Two different types of fire modeling methodologies were developed in this research and used to predict the thermo-structural response of bridge structural elements: one to model the non-uniform exposure due to a vehicle fire and another to predict response due to a standard uniform furnace exposure. The vehicle fire scenarios required coupling the computational fluid dynamics (CFD) code Fire Dynamics Simulator (FDS) with Abaqus while the furnace exposure scenarios were all done within Abaqus. Both methodologies were benchmarked against experimental data. Using the developed methodologies, simulations were initially performed to predict the thermo-structural response of a single steel girder-concrete deck composite assembly to different local, non-uniform fires and uniform standard furnace fire exposures. The steel girder-concrete deck composite assembly was selected since it is a common bridge design. Following this, a series of simulations were performed on unprotected highway bridges with multiple steel plate girders and steel tub girders subjected to localized fires. The analyses were used to evaluate the influence of a fire scenario on the bridge element response, identify the factors governing the failure of bridge structural elements subjected to a localized fire exposure, and provide guidance in the design of highway bridge structural elements against fire hazards. This study demonstrates that girder geometry affected both the dynamics of the fire as well as the heat transfer to the bridge structural elements which resulted in a different structural response for the bridge. A heavy goods vehicle (heat release rate of 200 MW) and tanker fires (heat release rate of 300 MW) were predicted to cause the bridge to fail due to collapse, while smaller fires did not. The geometric features of the plate girders caused the girder elements to be exposed to higher heat fluxes from both sides of the girder resulting in collapse when exposed to a HGV fire. Conversely, the closed feature of the box girder does not allow the interior surfaces to be in direct contact with the flames and are only exposed to the internal reradiation from surfaces inside the girder. As a result, the single and double lane tub girder highway bridge structure does not fail due to a heavy goods vehicle fire exposure.
- Computational Study of Parameters Affecting Electric Cabinet Fire Heat Release RateSalvi, Urvin Uday (Virginia Tech, 2022-06-22)Electrical cabinet fires occur frequently in commercial and industrial facilities. However, the severity of these fire events varies widely, making it difficult to estimate the fire growth and size with certainty. This study aims to identify the significant parameters that affect electrical cabinet fires, which are quantified as the heat release rate (HRR), and properly categorize them. With this knowledge, optimal parameter-response relationships can be developed to predict the electrical cabinet fire behavior. Statistical analysis conducted in this study on historical fire incident data revealed that the fires in Nuclear Power Plants (NPP) were primarily associated with electrical cabinets. The database used in this research was an electronic version of the publicly available Updated Fire Event Database developed by Electric Power Research Institute, including 2,111 fire events. 540 of these events were labeled as being challenging fires with 74.2% of these challenging fire events being due to eleven selected fire types. Electrical cabinets were found to represent a majority (40.7%) of all the challenging fire events. Although historically conducted electrical cabinet fire experiments sought to explore the influence of parameters on HRR, the parameters were not systematically varied to statistically quantify which parameters were most important/relevant. Research in this study used statistical analysis on a series of simulation results on electrical cabinet fires from the computational fluid dynamics code Fire Dynamic Simulator (FDS). Simulation matrices were developed and evaluated using fractional factorial Design of Experiments (DOE) to screen the importance of different parameters on the electric cabinet HRR. Based on statistical analysis of the results, the combustible material surface area was found to be the most significant parameter followed by cabinet volume, combustible configuration, burning duration, and combustible material heat release rate per unit area. Material ignition temperature was found to not be statistically significant. The last phase of this research assessed the robustness of the electrical cabinet parameters on the predicted HRR with more detailed simulations. Two investigations were undertaken. To identify the nonlinear effects of parameters on the electrical cabinet fire HRR, a Response Surface Methodology (RSM) based Central Composite Design (CCD) was used to create a simulation matrix that would allow statistical analysis of important parameters as well as their effects on the fire heat release rate while keeping the combustible configuration inside the cabinet constant. A series of simulations were conducted to explore the impact of combustible configuration and ignition source location while keeping all other variables consistent. The analysis revealed that all variables had a statistically significant effect on peak HRR. For the average HRR, both the ventilation area into the cabinet and the ignition source HRR were found to be statistically insignificant. For both output variables, the cabinet volume, material heat release rate per unit area, and material surface area were the most significant parameters. Combustible configuration and ignition source location were also found to be statistically significant.
- A Computational Study of the Hydrodynamics of Gas-Solid Fluidized BedsTeaters, Lindsey Claire (Virginia Tech, 2012-05-31)Computational fluid dynamics (CFD) modeling was used to predict the gas-solid hydrodynamics of fluidized beds. An Eulerian-Eulerian multi-fluid model and granular kinetic theory were used to simulate fluidization and to capture the complex physics associated therewith. The commercial code ANSYS FLUENT was used to study two-dimensional single solids phase glass bead and walnut shell fluidized beds. Current modeling codes only allow for modeling of spherical, uniform-density particles. Owing to the fact that biomass material, such as walnut shell, is abnormally shaped and has non-uniform density, a study was conducted to find the best modeling approach to accurately predict pressure drop, minimum fluidization velocity, and void fraction in the bed. Furthermore, experiments have revealed that all of the bed mass does not completely fluidize due to agglomeration of material between jets in the distributor plate. It was shown that the best modeling approach to capture the physics of the biomass bed was by correcting the amount of mass present in the bed in order to match how much material truly fluidizes experimentally, whereby the initial bed height of the system is altered. The approach was referred to as the SIM approach. A flow regime identification study was also performed on a glass bead fluidized bed to show the distinction between bubbling, slugging, and turbulent flow regimes by examining void fraction contours and bubble dynamics, as well as by comparison of simulated data with an established trend of standard deviation of pressure versus inlet gas velocity. Modeling was carried out with and without turbulence modeling (k-ϵ), to show the effect of turbulence modeling on two-dimensional simulations.
- Computational Study of Turbulent Combustion Systems and Global Reactor NetworksChen, Lu (Virginia Tech, 2017-09-05)A numerical study of turbulent combustion systems was pursued to examine different computational modeling techniques, namely computational fluid dynamics (CFD) and chemical reactor network (CRN) methods. Both methods have been studied and analyzed as individual techniques as well as a coupled approach to pursue better understandings of the mechanisms and interactions between turbulent flow and mixing, ignition behavior and pollutant formation. A thorough analysis and comparison of both turbulence models and chemistry representation methods was executed and simulations were compared and validated with experimental works. An extensive study of turbulence modeling methods, and the optimization of modeling techniques including turbulence intensity and computational domain size have been conducted. The final CFD model has demonstrated good predictive performance for different turbulent bluff-body flames. The NOx formation and the effects of fuel mixtures indicated that the addition of hydrogen to the fuel and non-flammable diluents like CO2 and H2O contribute to the reduction of NOx. The second part of the study focused on developing chemical models and methods that include the detailed gaseous reaction mechanism of GRI-Mech 3.0 but cost less computational time. A new chemical reactor network has been created based on the CFD results of combustion characteristics and flow fields. The proposed CRN has been validated with the temperature and species emission for different bluff-body flames and has shown the capability of being applied to general bluff-body systems. Specifically, the rate of production of NOx and the sensitivity analysis based on the CRN results helped to summarize the reduced reaction mechanism, which not only provided a promising method to generate representative reactions from hundreds of species and reactions in gaseous mechanism but also presented valuable information of the combustion mechanisms and NOx formation. Finally, the proposed reduced reaction mechanism from the sensitivity analysis was applied to the CFD simulations, which created a fully coupled process between CFD and CRN, and the results from the reduced reaction mechanism have shown good predictions compared with the probability density function method.
- Controlling Object Heat Release Rate using Geometrical FeaturesKraft, Stefan Marc (Virginia Tech, 2017-06-08)An experimental study was conducted to determine the effect of complex geometries on the burning rate of materials made using additive manufacturing. Controlling heat release rate has applicability in limiting fire hazards as well as for designing fuels for optimal burning rate. The burning rate of a structure is a function of the material properties as well as the airflow through it, which is dictated by the geometry. This burning rate is generally proportional to the porosity for objects in which the flow is limited by the path constriction. The relations between porosity and burning rate are well studied for wood cribs, which are layers of wood sticks. Crib and other objects with various geometric features were constructed of ABS plastic and coal powder using additive manufacturing processes. A cone calorimeter using oxygen calorimetry was used to measure the heat release rate of the crib specimens. Within the flow limited burning regime, the burning rate of an object is proportional to the porosity factor. Porosity factors calculated from a 1-D theoretical burn rate model as well as from two empirical models were found to correlate the heat release rate results for the crib samples. The heat release rate results of the complex geometries generally correlated to the same porosity factor; however, the model was modified to account for differences between regularly shaped cribs and objects with different sized flow areas. Using the empirical models provides good correlation for the crib burning data and gives a clearer delineation between the flow-limited and surface area controlled regimes.
- Creep and Elevated Temperature Mechanical Properties of 5083 and 6061 AluminumAllen, Benjamin William (Virginia Tech, 2012-12-20)With the increasing use of aluminum in naval vessels and the ever-present danger of fires, it is important to have a good understanding of the behavior of aluminum at elevated temperatures. The aluminum samples 5083-H116 and 6061-T651 were examined under a variety of loading conditions and temperatures. Tensile testing was completed on both materials to measure strength properties of elastic modulus, yield strength, and ultimate strength as well as reduction of area from room temperature to 500 deg C taking measurements every 50 deg C. These tests showed how much the material weakened as temperature increases. Low temperatures had a minimal effect on strength while exposure to temperatures between 200 and 300 deg C had the most significant impact. Creep testing was also completed for these materials. These tests were completed at temperatures between 200 and 400 deg C in 50 deg C increments. Stresses for these tests were in the range of 13 to 160MPa for 5083 aluminum and between 13 to 220MPa for 6061 aluminum. These tests showed a significant relationship between stress and temperature and how changes to one can cause a very different resulting behavior. In addition to the creep testing, three creep models were examined as a means of predicting creep behavior. These models included a power law, exponential, and hyperbolic-sine versions and were able to predict creep results with decent accuracy depending on the stress used in the model.
- Damage Reduction Strategies for a Falling Humanoid RobotAmico, Peter joseph (Virginia Tech, 2017-08-29)Instability of humanoid robots is a common problem, especially given external disturbances or difficult terrain. Even with the robustness of most whole body controllers, instability is inevitable given the right conditions. When these unstable events occur they can result in costly damage to the robot potentially causing a cease of normal functionality. Therefore, it is important to study and develop methods to control a humanoid robot during a fall to reduce the chance of critical damage. This thesis proposes joint angular velocity strategies to reduce the impact velocity resulting from a lateral, backward, or forward fall. These strategies were used on two and three link reduced order models to simulate a fall from standing height of a humanoid robot. The results of these simulations were then used on a full degree of freedom robot, Viginia Tech's humanoid robot ESCHER, to validate the efficacy of these strategies. By using angular velocity strategies for the knee and waist joint, the reduced order models resulted in a decrease in impact velocity of the center of mass by 58%, 87%, and 74% for a lateral, backward, and forward fall respectively in comparison to a rigid fall using the same initial conditions. Best case angular velocity strategies were then developed for various initial conditions for each falling direction. Finally, these parameters were implemented on the full degree of freedom robot which showed results similar to those of the reduced order models.
- Debond Buckling of Woven E-glass/Balsa Sandwich Composites Exposed to One-sided HeatingCholewa, Nathan (Virginia Tech, 2015-01-26)An experimental investigation was undertaken to analyze the behavior of sandwich composite structures exposed to one-sided heating where a debond exists between the unexposed facesheet and core material. Sandwich composites of plain weave E-glass/epoxy facesheets and an end-grain balsa wood core manufactured using the Vacuum Assisted Resin Transfer Molding (VARTM) technique were the only materials analyzed. These were selected due to their current use in naval vessels and the heightened interest in the fire response properties of balsa wood and its utility as a core material. In order to better understand the interfacial behavior, Mode I Double Cantilever Beam (DCB) fracture tests were performed at ambient, 60 C, and 80 C to determine the influence of the decreased Mode I fracture toughness. While ambient testing showed that stable crack growth could be obtained, high temperature tests resulted in considerable damage occurring to the core at the crack-front preventing stable crack growth. This can be attributed to the significant decrease in the balsa core strength and material properties even for small increases in temperature. Additionally, Mode II Cracked Split Beam (CSB) tests were performed at ambient temperature to examine the sliding dominant crack-growth. Again, the occurrence of balsa core damage prevented stable crack-growth and an accurate measurement of Mode II fracture toughness was not obtained. Intermediate-scale compression testing with one-sided heating at two heat flux levels was performed with a custom designed load frame on sandwich composite columns. This enabled the influence of the debond to be measured using a 3D-Digital Image Correlation (DIC) technique spatially linked with a thermographic camera. The DIC allowed for a detailed observation of debond growth and buckling prior to global failure of the test article. A behavior similar to that observed in the Mode I DCB fracture tests occurred: as the interfacial temperature increased, the amount of crack growth decreased. This crack growth was followed by a core failure at the crack-front, triggering a global failure of the test article. This global failure for test articles containing a debond manifested itself primarily as an anti-symmetric post-buckling shape. Test articles with no debond exhibited the typical progression of the out-of-plane displacement profile for a fixed-fixed column. As the out-of-plane displacement increased, core failure ultimately occurred near the gripped region where the zero-slope condition is required, triggering global failure of the no debond test article. These tests highlight that the reduction in strength and material properties of the end-grain balsa wood core significantly outweigh the reduction in interfacial fracture toughness due to the increased temperatures.
- Design and Control of a Humanoid Robot, SAFFiRLahr, Derek Frei (Virginia Tech, 2014-05-29)Emergency first responders are the great heroes of our day, having to routinely risk their lives for the safety of others. Developing robotic technologies to aid in such emergencies could greatly reduce the risk these individuals must take, even going so far as to eliminate the need to risk one life for another. In this role, humanoid robots are a strong candidate, being able to take advantage of both the human engineered environment in which it will likely operate, but also make use of human engineered tools and equipment as it deals with a disaster relief effort. The work presented here aims to lessen the hurdles that stand in the way through the research and development of new humanoid robot technologies. To be successful in the role of an emergency first responder requires a fantastic array of skills. One of the most fundamental is the ability to just get to the scene. Unfortunately, it is at this level that humanoid robots currently struggle. This research focuses on the complementary development of physical hardware, digital controllers, and trajectory planning necessary to achieve the research goals of improving the locomotion capabilities of a humanoid robot. To improve the physical performance capabilities of the robot, this research will first focus on the interaction between the hip and knee actuators. It is shown that much like the human body, a biped greatly benefits from the use of biarticular actuation. Improvements in efficiency as much as 30% are possible by simply interconnecting the hip roll and knee pitch joints. Balancing and walking controllers are designed to take advantage of the new hardware capabilities and expand the terrain capabilities of bipedal walking robots to uneven and non-stationary ground. A hybrid position/force control based balancing controller stabilizes the robot's COM regardless of the terrain underfoot. In particular two feedback mechanisms are shown to greatly improve the stability of bipedal systems in response to unmodelled dynamics. The hybrid position/force approach is shown through experiments to greatly extend humanoid capabilities to many types of terrain. With robust balancing ensured, walking trajectories are defined using an improved linear inverted pendulum model that incorporates the swing leg dynamics. The proposed method is shown to significantly reduce the control authority (by 50%) required for satisfactory trajectory following. Three parameters are identified which provide for quick manual or numerical solutions to be found to the trajectory problem. The walking and balance controller were operated on four different terrains successfully, strewn plywood, gravel, and high pile synthetic grass. Furthermore, SAFFiR is believed to be the first bipedal robot to ever walk on sand. The hardware enabled force control architecture was very effective at modulating ground reaction torques no matter the ground conditions. This in combination with highly accurate state estimation provided a very stable balance controller on top of which successful walking was demonstrated.
- Design and Evaluation of an Underactuated Robotic Gripper for Manipulation Associated with Disaster ResponseRouleau, Michael Thomas (Virginia Tech, 2015-07-17)The following study focuses on the design and validation of an underactuated robotic gripper built for the Tactical Hazardous Operations Robot (THOR). THOR is a humanoid robot designed for use in the DARPA Robotics Challenge (DRC) and the Shipboard Autonomous Fire Fighting Robot (SAFFiR) project, both of which pertain to completing tasks associated with disaster response. The gripper was designed to accomplish a list of specific tasks outlined by the DRC and SAFFiR project. Underactuation was utilized in the design of the gripper to keep its complexity low while acquiring the level of dexterity needed to complete the required tasks. The final gripper contains two actuators, two underactuated fingers and a fixed finger resulting in four total degrees of freedom (DOF). The gripper weighs 0.68 kg and is capable of producing up to 38 N and 62 N on its proximal and distal phalanges, respectively. The gripper was put through a series of tests to validate its performance pertaining to the specific list of tasks it was designed to complete. The results of these tests show the gripper is in fact capable of completing all the necessary actions but does so within some limitations.