Design and Evaluation of an Underactuated Robotic Gripper for Manipulation Associated with Disaster Response

TR Number

Date

2015-07-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The following study focuses on the design and validation of an underactuated robotic gripper built for the Tactical Hazardous Operations Robot (THOR). THOR is a humanoid robot designed for use in the DARPA Robotics Challenge (DRC) and the Shipboard Autonomous Fire Fighting Robot (SAFFiR) project, both of which pertain to completing tasks associated with disaster response.

The gripper was designed to accomplish a list of specific tasks outlined by the DRC and SAFFiR project. Underactuation was utilized in the design of the gripper to keep its complexity low while acquiring the level of dexterity needed to complete the required tasks. The final gripper contains two actuators, two underactuated fingers and a fixed finger resulting in four total degrees of freedom (DOF). The gripper weighs 0.68 kg and is capable of producing up to 38 N and 62 N on its proximal and distal phalanges, respectively.

The gripper was put through a series of tests to validate its performance pertaining to the specific list of tasks it was designed to complete. The results of these tests show the gripper is in fact capable of completing all the necessary actions but does so within some limitations.

Description

Keywords

Gripper, Underactuated, Manipulation, Hand, Four Bar, Mechanism, Humanoid, Robot

Citation

Collections