Browsing by Author "Ng, Wing Fai"
Now showing 1 - 20 of 135
Results Per Page
Sort Options
- 3-D flow calculations of a bifurcated 2D supersonic engine inlet at takeoffKozak, Jeffrey D. (Virginia Tech, 1995-08-05)An internal, 3-D, viscous numerical flow simulation was performed on the rectangular-to-circular transition, bifurcated, 2D high speed civil transport engine inlet at takeoff. The objective of the study was to obtain the causes of flow distortion at the inlet fan face. The inlet was modeled with the centerbody in the fully collapsed takeoff position. A single block, 14Ox40x40 Polar grid topology of a 1/4 symmetry volume of the inlet was used in the simulation. The calculation employed the well established, robust PARC3D CFD code, which uses the full three-dimensional, Reynolds averaged, Navier-Stokes equations in strong conservation form. The flow was considered to be turbulent over the entire flow region. The turbulence model incorporated into PARC3D is the algebraic Baldwin Lomax model. Limitations existed in the local region where the flow interacts with the nose cone due to the inherent limitations of the turbulence model. The results showed that the flow throughout the inlet was well behaved. The turbulent boundary layers were thin and stayed attached to the surfaces of the inlet throughout the entire flowfield. A high pressure recovery was observed at the fan face. Radial distortion at the fan face was caused by thin boundary layers on the nose cone and cowl surfaces. Circumferential distortion was caused by pressure gradients produced by the wake of the splitter plate, located just upstream of the fan.
- 3D Numerical Simulation to Determine Liner Wall Heat Transfer and Flow through a Radial Swirler of an Annular Turbine CombustorKumar, Vivek Mohan (Virginia Tech, 2013-08-26)RANS models in CFD are used to predict the liner wall heat transfer characteristics of a gas turbine annular combustor with radial swirlers, over a Reynolds number range from 50,000 to 840,000. A three dimensional hybrid mesh of around twenty five million cells is created for a periodic section of an annular combustor with a single radial swirler. Different turbulence models are tested and it is found that the RNG k-e model with swirl correction gives the best comparisons with experiments. The Swirl number is shown to be an important factor in the behavior of the resulting flow field. The swirl flow entering the combustor expands and impinges on the combustor walls, resulting in a peak in heat transfer coefficient. The peak Nusselt number is found to be quite insensitive to the Reynolds number only increasing from 1850 at Re=50,000 to 2200 at Re=840,000, indicating a strong dependence on the Swirl number which remains constant at 0.8 on entry to the combustor. Thus the peak augmentation ratio calculated with respect to a turbulent pipe flow decreases with Reynolds number. As the Reynolds number increases from 50,000 to 840,000, not only does the peak augmentation ratio decrease but it also diffuses out, such that at Re=840,000, the augmentation profiles at the combustor walls are quite uniform once the swirl flow impinges on the walls. It is surmised with some evidence that as the Reynolds number increases, a high tangential velocity persists in the vicinity of the combustor walls downstream of impingement, maintaining a near constant value of the heat transfer coefficient. The computed and experimental heat transfer augmentation ratios at low Reynolds numbers are within 30-40% of each other.
- Acoustic Tomography and Thrust Estimation on Turbofan EnginesGillespie, John Lawrie (Virginia Tech, 2023-12-21)Acoustic sensing provides a possibility of measuring propulsion flow fields non-intrusively, and is of great interest because it may be applicable to cases that are difficult to measure with traditional methods. In this work, some of the successes and limitations of this technique are considered. In the first main result, the acoustic time of flight is shown to be usable along with a calibration curve in order to accurately estimate the thrust of two turbofan engines (1.0-1.5%). In the second, it is shown that acoustic tomography methods that only use the first ray paths to arrive cannot distinguish some relevant propulsion flow fields (i.e., different flow fields can have the same times of flight). In the third result we demonstrate, via the first validated acoustic tomography experiment on a turbofan engine, that a reasonable estimate of the flow can be produced despite this challenge. This is also the first successful use of acoustic tomography to reconstruct a compressible, multi-stream flow.
- Advanced Instrumentation and Measurements Techniques for Near Surface FlowsCadel, Daniel R. (Virginia Tech, 2016-09-20)The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0ms^-1 to over 3000ms^-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramér-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Re_c = 170, 000 is embedded for a reduced frequency k = (pi)fc/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The fluctuating component of the phase- averaged turbulent boundary layer profiles is described using the exact solution to laminar Stokes flow. A phase lag similar to that in laminar flow is observed with an additional constant phase layer in the buffer region. The phase lag is relevant for modeling the intermittent transition and separation expected at full scale.
- Aerodynamic Interactions in Vortex Tube Separator ArraysAcharya, Aditya Sudhindra (Virginia Tech, 2023-06-22)Helicopter turboshaft engines may ingest large amounts of foreign particles (most commonly sand/dust), which can cause significant compressor blade damage and even engine failure. In many helicopters, this issue is mitigated by separating the particles from the intake airstream. An effective device for engine air-particle separation is the vortex tube separator (VTS), which uses centrifugal forces in a vortical flow to radially filter foreign particles from a duct with an annular exit. Dozens or hundreds of these devices are linked together on a shared manifold known as a VTS array. There is a distinct lack of scientific literature regarding these arrays, which likely feature significantly more complex flowfields than singular VTSs due to aerodynamic interactions between the devices. The research presented in this dissertation identifies and explains flow features unique to arrays by means of an experimental investigation downstream of various VTS configurations in a wind tunnel. Mean PIV flowfields reveal that the VTS array rapidly generates a strong central recirculation zone while a single VTS does not, implying the existence of axial flow gradients within associated separators that could affect filtration efficiency. The key factor here is the global swirl intensity, which is increased in array flows due to high angular momentum contributions from separators that are radially distant from the duct center. A preliminary momentum integral model is constructed to predict the onset of recirculation in VTS flows. Analysis is then extended to the unsteady flowfield, where it is shown that VTS-generated turbulence contains only low levels of anisotropy. Spectral proper orthogonal decomposition is conducted on the array flow; it reveals the existence of low-frequency harmonic behavior composed of back-and-forth pumping motions downstream of the central VTS. Additionally, a unique precession motion is found in the same region at a slightly higher frequency. Similar precessing vortex cores have been shown to reduce separation efficiency in other cyclone separators. Both of these coherent structures may be associated with the central recirculation zone and may interfere with VTS array filtration given their timescales relative to potential particle relaxation timescales. This dissertation opens the door for future experimental and computational studies of fluid and particle dynamics in VTS flows with the goal of improving VTS array-specific design philosophies.
- Aerodynamic Investigation of Upstream Misalignment over the Nozzle Guide Vane in a Transonic CascadeLee, Yeong Jin (Virginia Tech, 2017-06-06)The possibility of misalignments at interfaces would be increased due to individual parts' assembly and external factors during its operation. In actual engine representative conditions, the upstream misalignments have effects on turbines performance through the nozzle guide vane passages. The current experimental aerodynamic investigation over the nozzle guide vane passage was concentrated on the backward-facing step of upstream misalignments. The tests were performed using two types of vane endwall platforms in a 2D linear cascade: flat endwall and axisymmetric converging endwall. The test conditions were a Mach number of 0.85, Re_ex 1.5*10^6 based on exit condition and axial chord, and a high freestream turbulence intensity (16%), at the Virginia tech transonic cascade wind tunnel. The experimental results from the surface flow visualization and the five-hole probe measurements at the vane-passage exit were compared with the two cases with and without the backward-facing step for both types of endwall platforms. As a main source of secondary flow, a horseshoe vortex at stagnation region of the leading edge of the vane directly influences other secondary flows. The intensity of the vortex is associated with boundary layer thickness of inlet flow. In this regard, the upstream backward-facing step as a misalignment induces the separation and attachment of the inlet flow sequentially, and these cause the boundary layer of the inlet flow to reform and become thinner locally. The upstream-step positively affects loss reduction in aerodynamics due to the thinner inlet boundary layer, which attenuates a horseshoe vortex ahead of the vane cascade despite the development of the additional vortices. And converging endwall results in an increase of the effect of the upstream misalignment in aerodynamics, since the inlet boundary layer becomes thinner near the vane's leading edge due to local flow acceleration caused by steep contraction of the converging endwall. These results show good correlation with many previous studies presented herein.
- Aerodynamic Measurements in a Wind Tunnel on Scale Models of a 777 Main Landing GearRingshia, Aditya K. (Virginia Tech, 2006-08-07)Aerodynamic measurements were taken over models of the Boeing 777 high fidelity isolated landing gear in the 6- by 6-foot Virginia Tech Stability Wind Tunnel (VT-SWT) at a free-stream Mach number of 0.16. Noise control devices (NCD) were developed at Virginia Tech [9] to reduce noise by shielding gear components, reducing wake interactions and by streamlining the flow around certain landing gear components. Aerodynamic measurements were performed to understand the flow over the landing gear and also changes in the flow between "Baseline" and "NCD" configurations (without and with Noise Control Devices respectively). Hot-film, Pitot-static measurements and flow visualization using tufts were performed over an isolated 26% scale-model high fidelity landing gear for the "Baseline" and "NCD" configurations. Contours of turbulence intensity, normalized wake velocity and normalized total pressure loss for both configurations are compared. The "Baseline" configuration was also compared with the NASA Ames study conducted by Horne et al [7]. Hot-film measurements are also compared to Microphone Phased Array results which were acquired at Virginia Tech by Ravetta [8]. A novel technique for processing hot-film measurements by breaking turbulence into octave bands as acoustic measurements is presented. Particle Image Velocimetry (PIV) measurements were taken at six different locations over the 13% scale-model landing gear with no door and at a truck angle of zero degrees. Results are compared to PIV measurements taken over the wheels of a four-wheel landing gear by Lazos [10-12]. PIV results such as average velocity contours and vectors, streamlines and instantaneous velocity contours and vectors are presented. Results presented from PIV and flow visualization are in good agreement with results from Lazos [10-12].
- Aerodynamic Performance of a Flow Controlled Compressor Stator Using an Imbedded Ejector PumpCarter, Casey Joseph (Virginia Tech, 2001-02-09)A high-turning compressor stator with a unique flow control design was developed and tested. Both boundary layer suction and trailing edge blowing developed from a single supplied motive pressure source are employed on the stator. Massflow removed through boundary layer suction is added to the motive massflow, and the resulting combined flow is used for trailing edge blowing to reduce the total pressure deficit generated by the stator wake. The effectiveness of the flow control design was investigated experimentally by measuring the reduction in the total pressure loss coefficient. The experiment was conducted in a linear transonic blowdown cascade wind tunnel. The inlet Mach number for all tests was 0.79, with a Reynolds number based on stator chordlength of 2,000,000. A range of inlet cascade angles was tested to identify the useful range of the flow control design. The effect of different supply massflows represented as a percentage of the passage throughflow was also documented. Significant reductions in the total pressure loss coefficient were accomplished with flow control at low cascade angles. A maximum reduction of 65% in the baseline (no flow control) loss coefficient was achieved by using a motive massflow of 1.6% of the passage throughflow, at cascade angle of 0°. The corresponding suction and blowing massflow ratio was approximately 1:3.6. Cascade angle results near 0° showed significant reductions in the loss coefficient, while increases in the cascade angle diminished the effects of flow control. Considerable suction side separation and the presence of a leading edge shock are noticeable as the cascade angle is increased, and contribute to the losses across the stator surface. Also identified was the estimated increase in wake turning due to flow control of up to 4.5°.
- Aerodynamic performance of a transonic turbine blade passage in presence of upstream slot and mateface gap with endwall contouringJain, Sakshi (Virginia Tech, 2014-01-27)The present study investigates mixed out aerodynamic loss coefficient measurements for a high turning, contoured endwall passage under transonic operating conditions in presence of upstream purge slot and mateface gap. The upstream purge slot represents the gap between stator-rotor interface and the mateface gap simulates the assembly feature between adjacent airfoils in an actual high pressure turbine stage. While the performance of the mateface and upstream slot has been studied for lower Mach number, no studies exist in literature for transonic flow conditions. Experiments were performed at the Virginia Tech's linear, transonic blow down cascade facility. Measurements were carried out at design conditions (isentropic exit Mach number of 0.87, design incidence) without and with coolant blowing. Upstream leakage flow of 1.0% coolant to mainstream mass flow ratio (MFR) was considered with the presence of mateface gap. There was no coolant blowing through the mateface gap itself. Cascade exit pressure measurements were carried out using a 5-hole probe traverse at a plane 1.0Cax downstream of the trailing edge for a planar geometry and two contoured endwalls. Spanwise measurements were performed to complete the entire 2D loss plane from endwall to midspan, which were used to plot pitchwise averaged losses for different span locations and loss contours for the passage. Results reveal significant reduction in aerodynamic losses using the contoured endwalls due to the modification of flow physics compared to a non contoured planar endwall.
- Aerodynamic Performance of High Turning Airfoils and the Effect of Endwall Contouring on Turbine PerformanceAbraham, Santosh (Virginia Tech, 2011-08-31)Gas turbine companies are always focused on reducing capital costs and increasing overall efficiency. There are numerous advantages in reducing the number of airfoils per stage in the turbine section. While increased airfoil loading offers great advantages like low cost and weight, they also result in increased aerodynamic losses and associated issues. The strength of secondary flows is influenced by the upstream boundary layer thickness as well as the overall flow turning angle through the blade row. Secondary flows result in stagnation pressure loss which accounts for a considerable portion of the total stagnation pressure loss occurring in a turbine passage. A turbine designer strives to minimize these aerodynamic losses through design changes and geometrical effects. Performance of airfoils with varying loading levels and turning angles at transonic flow conditions are investigated in this study. The pressure difference between the pressure side and suction side of an airfoil gives an indication of the loading level of that airfoil. Secondary loss generation and the 3D flow near the endwalls of turbine blades are studied in detail. Detailed aerodynamic loss measurements, both in the pitchwise as well as spanwise directions, are conducted at 0.1 axial chord and 1.0 axial chord locations downstream of the trailing edge. Static pressure measurements on the airfoil surface and endwall pressure measurements were carried out in addition to downstream loss measurements. The application of endwall contouring to reduce secondary losses is investigated to try and understand when contouring can be beneficial. A detailed study was conducted on the effectiveness of endwall contouring on two different blades with varying airfoil spacing. Heat transfer experiments on the endwall were also conducted to determine the effect of endwall contouring on surface heat transfer distributions. Heat transfer behavior has significant effect on the cooling flow needs and associated aerodynamic problems of coolant-mainstream mixing. One of the primary objectives of this study is to provide data under transonic conditions that can be used to confirm/refine loss predictions for the effect of various Mach numbers and gas turning. The cascade exit Mach numbers were varied within a range from 0.6 to 1.1. A published experimental study on the effect of end wall contouring on such high turning blades at high exit Mach numbers is not available in open literature. Hence, the need to understand the parametric effects of endwall contouring on aerodynamic and heat transfer performance under these conditions.
- Aerodynamics of a Transonic Turbine Vane with a 3D Contoured Endwall, Upstream Purge Flow, and a Backward-Facing StepGillespie, John Lawrie (Virginia Tech, 2017-08-09)This experiment investigated the effects of a non-axisymmetric endwall contour and upstream purge flow on the secondary flow of an inlet guide vane. Three cases were tested in a transonic wind tunnel with an exit Mach number of 0.93-a flat endwall with no upstream purge flow, the same flat endwall with upstream purge flow, and a 3D contoured endwall with upstream purge flow. All cases had a backward-facing step upstream of the vanes. Five-hole probe measurements were taken 0.2, 0.4, and 0.6 Cx downstream of the vane row trailing edge, and were used to calculate loss coefficient, secondary velocity, and secondary kinetic energy. Additionally, surface static pressure measurements were taken to determine the vane loading at 4% spanwise position. Surface oil flow visualizations were performed to analyze the flow qualitatively. No statistically significant differences were found between the three cases in mass averaged downstream measurements. The contoured endwall redistributed losses, rather than making an improvement distinguishable beyond experimental uncertainty. Flow visualization found that the passage vortex penetrated further in the spanwise direction into the passage for the contoured endwall (compared to the flat endwall), and stayed closer to the endwall with a blowing ratio of 1.5 with a flat endwall (compared to no blowing with flat endwall). This was corroborated by the five hole probe results.
- Aerodynamics of Endwall Contouring with Discrete Holes and an Upstream Purge Slot Under Transonic Conditions with and without BlowingBlot, Dorian Matthew (Virginia Tech, 2013-01-23)Endwall contouring has been widely studied as an effective measure to improve aerodynamic performance by reducing secondary flow strength. The effects of endwall contouring with discrete holes and an upstream purge slot for a high turning (127") airfoil passage under transonic conditions are investigated. The total pressure loss and secondary flow field were measured for two endwall geometries. The non-axisymmetric endwall was developed through an optimization study [1] to minimize secondary losses and is compared to a baseline planar endwall. The blade inlet span increased by 13 degrees with respect to the inlet in order to match engine representative inlet/exit Mach number loading in a HP turbine. The experiments were performed in a quasi-2D linear cascade with measurements at design exit Mach number 0.88 and incidence angle. Four cases were analyzed for each endwall -- the effect of slot presence (with/without coolant) and the effect of discrete holes (with/without coolant) without slot injection. The coolant to mainstream mass flow ratio was set at 1.0% and 0.25% for upstream purge slot and discrete holes, respectively. Aerodynamic loss coefficient is calculated with the measured exit total pressure at 0.1 Cax downstream of the blade trailing edge. CFD studies were conducted in compliment. The aero-optimized endwall yielded lower losses than baseline without the presence of the slot. However, in presence of the slot, losses increased due to formation of additional vortices. For both endwall geometries, results reveal that the slot has increased losses, while the addition of coolant further influences secondary flow development.
- Algorithms for Tomographic Reconstruction of Rectangular Temperature Distributions using Orthogonal Acoustic RaysKim, Chuyoung (Virginia Tech, 2016-09-09)Non-intrusive acoustic thermometry using an acoustic impulse generator and two microphones is developed and integrated with tomographic techniques to reconstruct temperature contours. A low velocity plume at around 450 °F exiting through a rectangular duct (3.25 by 10 inches) was used for validation and reconstruction. 0.3 % static temperature relative error compared with thermocouple-measured data was achieved using a cross-correlation algorithm to calculate speed of sound. Tomographic reconstruction algorithms, the simplified multiplicative algebraic reconstruction technique (SMART) and least squares method (LSQR), are investigated for visualizing temperature contours of the heated plume. A rectangular arrangement of transmitter and microphones with a traversing mechanism collected two orthogonal sets of acoustic projection data. Both reconstruction techniques have successfully recreated the overall characteristic of the contour; however, for the future work, the integration of the refraction effect and implementation of additional angled projections are required to improve local temperature estimation accuracy. The root-mean-square percentage errors of reconstructing non-uniform, asymmetric temperature contours using the SMART and LSQR method are calculated as 20% and 19%, respectively.
- Analysis of film cooling performance of tripod holeRamesh, Sridharan (Virginia Tech, 2016-09-09)The thermal efficiency of a gas turbine directly depends on the rotor inlet temperature. The ever increasing demand for more power and advances in the field of engineering enabled this temperature to be pushed higher. But the material strength of the blades and vanes can often impose restrictions on the thermal load it can bear. This is where gas turbine cooling becomes very critical and a better cooling design has the potential to extend the blade life span, enables higher rotor inlet temperatures, conserves compressor bleed air. Among various kinds of cooling involved in gas turbines, film cooling will be the subject of this study. A novel concept for film cooling holes referred to as anti-vortex design proposed in 2007 is explored in this study. Coolant exits through two bifurcated cylindrical holes that branched out on either side of the central hole resulting in a tripod-like arrangement. Coolant from the side holes interacted with the mainstream and produced vortices that countered the main central rotating vortex pairs, weakening it and pushing the coolant jet towards the surface. In order to understand the performance of this anti-vortex tripod film cooling, a flat plate test setup and a low speed subsonic wind tunnel linear cascade were built. Transient heat transfer experiments were carried out in the flat plate test setup using Infrared thermography. Film cooling performance was quantified by measuring adiabatic effectiveness and heat transfer coefficient ratio. In order to gauge the performance, other standard hole geometries were also tested and compared with. Following the results from the flat plate test rig, film cooling performance was also evaluated on the surface of an airfoil. Adiabatic effectiveness was measured at different coolant mass flow rates. The tripod hole consistently provided better cooling compared to the standard cylindrical hole in both the flat plate and cascade experiments. In order to understand the anti-vortex concept which is one of the primary reason behind better performance of the tripod film cooling hole geometry, numerical simulations (CFD) were carried out at steady state using RANS turbulence models. The interaction of the coolant from the side holes with the mainstream forms vortices that tries to suppress the vortex formed by the central hole. This causes the coolant jet from the central to stay close to the surface and increases its coverage. Additionally, the coolant getting distributed into three individual units reduces the exit momentum ratio. Tripod holes were found to be capable of providing better effectiveness even while consuming almost half the coolant used by the standard cylindrical holes.
- Application of a Non-intrusive Optical Non-spherical Particle Sizing Sensor at Turboshaft Engine InletAntous, Brittney Louise (Virginia Tech, 2023-04-20)
- Aspirating probes for measurement of mean concentration and fluctuating quantities in supersonic air/helium shear layerNinnemann, Todd A. (Virginia Tech, 1990-12-31)Two aspirating hot-film probes are developed to make measurements in supersonic air/helium shear layers. The first probe is designed to measure local mean gas composition and is referred to as the mean concentration probe. This probe consists of a constant temperature hot-film sensor operating in a channel with a choked exit. The flow over the hot-fifm is influenced only by total temperature, total pressure, and gas composition. The mean probe is easily calibrated and shows acceptable sensitivity to flow angularity. The second probe is based on an improved design of the mean concentration probe. In addition to measuring mean composition, this second probe also measures turbulence intensities of Reynolds number and thermal conductivity using a multiple overheat method. This probe is referred to as the turbulent probe. Both probes are used in the study of supersonic air/helium mixing layers in the VPI&SU 23 cmx23 cm Supersonic Wind Tunnel. Profiles of mean and turbulent quantities are presented.
- Comparison of the Thermal Performance of Several Tip Cooling Designs for a Turbine BladeChristophel, Jesse Reuben (Virginia Tech, 2003-09-19)Gas turbine blades are subject to harsh operating conditions that require innovative cooling techniques to insure reliable operation of parts. Film-cooling and internal cooling techniques can prolong blade life and allow for higher engine temperatures. This study examines several unique methods of cooling the turbine blade tip. The first method employs holes placed directly in the tip which inject coolant onto the blade tip. The second and third methods used holes placed on the pressure side of a blade near the tip representative of two different manufacturing techniques. The fourth method is a novel cooling technique called a microcircuit, which combines internal convection and injection from the pressure side near a turbine blade tip. Wind tunnel tests are used to observe how effectively these designs cool the tip through adiabatic effectiveness measurements and convective heat transfer measurements. Tip gap size and blowing ratio are varied for the different tip cooling configurations. Results from these studies show that coolant injection from either the tip surface or from the pressure side near the tip are viable cooling methods. All of these studies showed better cooling could be achieved at small tip gaps than large tip gaps. The results in which the two different manufacturing techniques were compared indicated that the technique producing more of a diffused hole provided better cooling on the tip. When comparing the thermal performance of all the cooling schemes investigated, the added benefit of the internal convective cooling shows that the microcircuit outperforms the other designs.
- A Comprehensive Three-Dimensional Analysis of the Wake Dynamics in Complex Turning VanesHayden, Andrew Phillip (Virginia Tech, 2023-12-20)A comprehensive computational and experimental analysis has been conducted to characterize the flow dynamics and periodic structures formed in the wake of complex turning vanes. The vane packs were designed by the StreamVane swirl distortion generator technology, a design system that can efficiently reproduce swirl distortion for compressor rig and full turbofan engine testing. StreamVanes consist of an array of turning vanes that commonly contain variations in turning angle along their span, a nonaxisymmetric profile about the centerline, and vane-to-vane intersections or junctions to accurately generate the desired distortion. In this study, vane packs are considered complex if they contain two out of three of these features, a combination seen in other turbomachinery components outside of StreamVane design. Similar to all stator vanes or rotor blades, StreamVane vane packs are constructed using a series of cross-sectional airfoil profiles with blunt trailing edges and finite thicknesses. This, in turn, introduces periodic vortex structures in the wake, commonly known as trailing edge vortex shedding. To fully understand how the dynamics and coherent wake formations within vortex shedding impact both the flow distortion and structural durability of StreamVanes, it is first necessary to characterize the corresponding wakes in three dimensions. The current study provides an in-depth analysis to predict and measure the trailing edge vortex development using high-fidelity computational fluid dynamics and stereoscopic time-resolved particle image velocimetry experiments. Two testcase StreamVane geometries were specifically designed with complex features to evaluate their influence on the dynamics and coherence of the respective vane wakes. Fully three-dimensional, unsteady computational fluid dynamics simulations were performed using a Reynolds-Averaged Navier-Stokes solver coupled with a standard two-equation turbulence model and a hybrid, scale-resolving turbulence model. Both models predicted large-scale wake frequencies within 1—14% of experiment, with a mean difference of less than 3.2%. These comparisons indicated that lower fidelity simulations were capable of accurately capturing such flows for complex vane packs. Additionally, structural and modal analyses were conducted using finite element models to determine the correlations between dominant structural modes and dominant wake (flow) modes. The simulations predicted that vortex shedding modes generally contained frequencies 300% larger than dominant structural modes, and therefore, vortex induced vibrations were unlikely to occur. Lastly, mode decomposition methods were applied to the experimental results to extract energy ratios and reveal dynamic content across high-order wake modes. The vortex shedding modes generated more than 80% of the total wake energy for both complex vane packs, and dynamic decomposition methods revealed unique structures within the vane junction wake. In all analyses, comparisons were made between different vane parameters, such as trailing edge thickness and turning angle, where it was found that trailing edge thickness was the dominant vortex shedding parameter. The motivation, methodology, and results of the following research is presented to better understand the wake interactions, computational predictive capabilities, and structural dynamics associated with vortex shedding from complex vane packs. Although the results directly relate to StreamVane distortion generator technology, the qualitative and quantitative comparisons between the selected methods, geometry parameters, and flow conditions can be extrapolated to modern turbomachinery components in general. Therefore, this dissertation aims to benefit distortion generator and turbomachinery designers by providing insight into the underlying physics and overall modeling techniques of the wake dynamics in highly three-dimensional, complex components.
- Compressible Flow Characterization Using Non-Intrusive Acoustic MeasurementsOtero Jr, Raul (Virginia Tech, 2017-10-10)Non-intrusive acoustic instruments that measure fluid velocity and temperature have been restricted to low subsonic Mach number applications due to increased complexities associated with acoustic refraction, low signal-to-noise ratios, and a limited range of practical applications. In the current work, the use of acoustics for non-intrusive flow monitoring in compressible flows is explored and a novel sonic anemometry and thermometry (SAT) technique is developed. Using multiple arrangements of SAT equipment, a compressible acoustic tomography technique was also developed to resolve flow non-uniformities. Three validation experiments were used to investigate the novel SAT technique performance, and a fourth validation experiment was used to explore compressible flow tomography capabilities. In the first experiment, an unheated jet was used to verify that the acoustic technique could measure fluid velocities in high subsonic Mach number flows. The application demonstrated velocity root mean square (RMS) errors of 9 m/s in unheated jet flows up to Mach 0.83. Next, a heated jet facility was used to assess the impact of fluid temperature on measurement accuracy. Using jet Mach numbers up to 0.7 and total temperatures up to 700 K, RMS velocity and static temperature errors up to 8.5 m/s (2.4% of maximum jet velocity) and 23.3 K (3.3% of total temperature) were observed. Finally, the acoustic technique was implemented at the exhaust of a JT15D-1A turbofan engine to investigate technique sensitivity to bypass engine conditions. A mass flow rate and thrust estimation approach was developed and RMS errors of 1.1 kg/s and 200 N were observed in conditions up to an exhaust Mach number of 0.48. Since modern acoustic tomography techniques require an incompressible flow assumption for velocity detection, advancements were made to extend acoustic tomography methods to compressible flow scenarios for the final experiment. The approach was tested in the heated jet operating at Mach 0.48 and 0.72 (total temperature of 675 K, approximately 2.25 times the ambient) and numerical simulations were used to identify technique sensitivity to input variables and system design. This research marks the first time an acoustic method has been used to estimate compressible flow velocities and temperatures.
- A Computational Framework for Fluid-Thermal Coupling of Particle DepositsPaul, Steven Timothy (Virginia Tech, 2018-06-13)This thesis presents a computational framework that models the coupled behavior between sand deposits and their surrounding fluid. Particle deposits that form in gas turbine engines and industrial burners, can change flow dynamics and heat transfer, leading to performance degradation and impacting durability. The proposed coupled framework allows insight into the coupled behavior of sand deposits at high temperatures with the flow, which has not been available previously. The coupling is done by using a CFD-DEM framework in which a physics based collision model is used to predict the post-collision state-of-the-sand-particle. The collision model is sensitive to temperature dependent material properties of sand. Particle deposition is determined by the particle's softening temperature and the calculated coefficient of restitution of the collision. The multiphase treatment facilitates conduction through the porous deposit and the coupling between the deposit and the fluid field. The coupled framework was first used to model the behavior of softened sand particles in a laminar impinging jet flow field. The temperature of the jet and the impact surface were varied(T^* = 1000 – 1600 K), to observe particle behavior under different temperature conditions. The Reynolds number(Rejet = 20, 75, 100) and particle Stokes numbers (Stp = 0.53, 0.85, 2.66, 3.19) were also varied to observe any effects the particles' responsiveness had on deposition and the flow field. The coupled framework was found to increase or decrease capture efficiency, when compared to an uncoupled simulation, by as much as 10% depending on the temperature field. Deposits that formed on the impact surface, using the coupled framework, altered the velocity field by as much as 130% but had a limited effect on the temperature field. Simulations were also done that looked at the formation of an equilibrium deposit when a cold jet impinged on a relatively hotter surface, under continuous particle injection. An equilibrium deposit was found to form as deposited particles created a heat barrier on the high temperature surface, limiting more particle deposition. However, due to the transient nature of the system, the deposit temperature increased once deposition was halted. Further particle injection was not performed, but it can be predicted that the formed deposit would begin to grow again. Additionally, a Large-Eddy Simulation (LES) simulation, with the inclusion of the Smagorinsky subgrid model, was performed to observe particle deposition in a turbulent flow field. Deposition of sand particles was observed as a turbulent jet (Re jet=23000,T_jet^*= 1200 K) impinged on a hotter surface(T_surf^*= 1600 K). Differences between the simulated flow field and relevant experiments were attributed to differing jet exit conditions and impact surface thermal conditions. The deposit was not substantive enough to have a significant effect on the flow field. With no difference in the flow field, no difference was found in the capture efficiency between the coupled and decoupled frameworks.