Browsing by Author "Parker, Robert G."
Now showing 1 - 20 of 23
Results Per Page
Sort Options
- Analysis and wave tank verification of the performance of point absorber WECs with different configurationsLi, Xiaofan; Martin, Dillon; Jiang, Boxi; Chen, Shuo; Thiagarajan, Krish; Parker, Robert G.; Zuo, Lei (2021-10)Extracting energy from ocean waves has become a heated topic since the energy crisis of the 2000s. Among all the different concepts and designs of Wave Energy Converter (WEC), point absorber is a widely adopted type with great potential, and various configurations and constraints are applicable to it. Here, the point absorber WECs with four different set-up configurations are explored: single body heaving WEC, two-body heaving WEC, two-body WEC with a flat plate (Reference Model 3), and a two-body WEC with a cylinder-shaped second body. Dynamic models are established for each case and wave tank tests are conducted for verification. The results show that the power capture of a point absorber can benefit from several aspects: the two-body WEC with a streamlined shape can double the wave capture width ratio (up to 66.5%) over the single-body WEC or Reference Model 3, while coupling other motion or mooring dynamics can further improve the capture width ratio by 12% by increasing the relative motion stroke.
- Analytical and Spectro-Spatial Analyses of Nonlinear Metamaterials for Vibration Control, Energy Harvesting, and Acoustic Non-ReciprocityBukhari, Mohammad Abdulbaqi (Virginia Tech, 2021-06-23)This dissertation investigates the nonlinear wave propagation phenomena in nonlinear metamaterials with nonlinear chains and nonlinear resonators using analytical and spectro-spatial analyses. In the first part of the thesis, the nonlinear metamaterials are modeled as a chain of masses with multiple local resonators attached to each cell. The nonlinearity stems from the chain's stiffness in one case and the local resonator's stiffness in another. Analytical approximates solutions are obtained for each case using perturbation techniques. These results are validated through numerical simulations and the results show good agreement. To further demonstrate the nonlinear wave propagation characteristics, spectro-spatial analyses are conducted on the numerical integration data sets. The wave profiles, short-term Fourier transform spectrograms, and contour plots of 2D Fourier transform show the presence of solitary waves for both sources of nonlinearity. In addition, spectro-spatial features demonstrate the presence of significant frequency shifts at different wavelength limits. indent The second part of the thesis studies a nonlinear electromechanical metamaterial and examines how the electromechanical coupling in the local resonator affects the wave propagation. Numerical examples indicate that the system can be used for simultaneous energy harvesting and vibration attenuation without any degradation in the size of bandgaps. Spectro-spatial analyses conducted on the electromechanical metamaterial also reveal the presence of solitons and frequency shifts. The presence of solitary wave in the electromechanical metamaterial suggests a significant improvement in energy harvesting and sensing techniques. The obtained significant frequency shift is employed to design an electromechanical diode, allowing voltage to be sensed and harvested only in one direction. Design guidelines and the role of different key parameters are presented to help designers to select the type of nonlinearity and the system parameters to improve the performance of acoustic diodes. indent The last part of this thesis studies the passive self-tuning of a metastructure via a beam-sliding mass concept. The governing equations of motions of the holding structure, resonator, and sliding mass are presented and discretized into a system of ODEs using Galerkin's projection. Given that the spatial parameters of the system continuously change over time (i.e., mode shapes and frequencies), instantaneous exact mode shapes and frequencies are determined for all possible slider positions. The numerical integration is conducted by continuously updating the spatial state of the system. The obtained exact mode shapes demonstrate that the resonance frequency of the resonator stretches over a wide frequency band. This observation indicates that the resonator can attenuates vibrations at a wide frequency range. Experiments are also conducted to demonstrate the passive self-tunability of the metastructure and the findings colloborate the analytical results.
- Archimedean Screw Turbine Based Energy Harvester and Acoustic Communication in Well Site ApplicationsLin, Rui (Virginia Tech, 2020-01-30)Wireless Sensor Networks (WSNs) has become increasingly important in the Oil and Gas industry. Despite the various advantages WSN has compared to the wired counter parts, it also faces some critical challenges in the oil fields; one of them is the power supply. The periodic replacement of batteries for the WSN in the downhole environments has been economically inconvenient and the enormous cost induced by the maintenance has turned people's attention to the energy harvesting technology, hoping for a more sustainable solution. Power supply is only half of the problem. To retrieve the data recorded by the various sensors in the downhole environments, a reliable way of wireless communication is required. A new approach utilizing acoustic communication was proposed. This thesis presents an Archimedean Screw Turbine (AST) based energy harvester that takes advantage of the abundant flow energy in the upper stream section of the oil production cycle, especially in the water injection wells and oil extraction wells, with the goal of providing power supply to Wireless Sensor Networks (WSNs) and underwater acoustic modems deployed in the various locations in the downhole environments. Parametric study on the number of blades, screw length, screw pitch, and rotational speed was conducted through CFD analysis using Ansys Fluent in order to determine the optimal geometry and operating conditions. The relationship between power generation and AST geometries, such as AST length and AST pitch, were discovered and the optimal rotational speed was revealed to be solely dependent on the screw pitch. Experiments were conducted in the lab environment with various flow rates and various external resistive loads to verify and determine the maximum power generation of the designed harvester. FEA analysis was conducted using the Acoustic and Structural Interaction Module of COMSOL MULTIPHYSICS to determine the attenuation characteristics of acoustic waves propagating in the water-filled pipes buried in soil. Experiments with and without the harvester integrated in the pipe system were conducted in lab environment using a pair of under water acoustic modems to determine the acoustic communication capability. The impact of the integrated harvester on the acoustic communication was tested. Combining energy harvesting technology and underwater acoustic communication together, this system can potentially achieve real-time monitoring and communication in the oil downhole environment.
- Autonomous Emergency Navigation to a Safe Roadside LocationFurukawa, Tomonari; Zuo, Lei; Parker, Robert G.; Yang, Lisheng (SAFE-D: Safety Through Disruption National University Transportation Center, 2020-11)In this project, we developed essential modules for achieving the proposed autonomous emergency navigation function for an automated vehicle. We investigated and designed sensing solutions for safe roadside location identification, as well as control solutions for autonomous navigation to the identified location. Sensing capabilities are achieved by advanced fusion algorithms of 3D Lidar and stereo camera data. A novel control design, based on dynamic differential programming, was developed to efficiently plan navigation trajectories while dealing with computation delay and modelling errors. Preliminary validation of proposed solutions was carried out in a simulated environment. The results show strong potential for success, especially for the control module. Hardware integration in a real vehicle has been ongoing in a parallel fashion to enable field tests of developed modules in future work. Key sensing equipment was installed and calibrated and used to collect data for offline analysis. The retrofitting of the vehicle’s actuation mechanism was finished with the whole drive-by-wire system in place. Future work will involve road testing the developed systems.
- A Computational Iteration Method to Analyze Mechanics of Timing Belt Systems with Non-Circular PulleysTan, Li (Virginia Tech, 2018-09-10)Timing belt systems, usually consisting of a toothed belt and multiple pulleys, are used in many mechanical devices, especially in the internal combustion engine to synchronize the rotation of the crankshafts and the camshafts. When the system operates, the belt teeth will be transmitted by the pulley teeth meshed with them. Timing belt drives can make sure that the engine' s valves open and close properly due to their precise transmission ratio. In this thesis, a quasi-static computational model is developed to calculate the belt load distributions and the torques around pulleys for different timing belt systems. The simplest system is a two-pulley system with one oval pulley and one circular pulley. This computational model is then extended to a two-pulley system with one special-shaped pulley and finally generalized to determine the load conditions for a multi-pulley system with multiple special-shaped pulleys. Belt tooth deflections, tooth loads, belt tension distributions, friction forces, and the effect of friction hysteresis have been taken into consideration. Results of these quantities are solved by a nested numerical iteration method. Periodic torques generated by the varied radius of noncircular pulley are calculated by this computational model to cancel the undesired external cyclic torque, which will increase the life of timing belts.
- Design of a Gravity Compensation Actuator for Arm AssistanceTang, Chen (Virginia Tech, 2018-02-19)This thesis presents the design, simulation, and evaluation of a passive, wearable, and human-scale actuator that includes pulleys and uses polymers for energy storage. Repetitive tasks such as packing boxes on an assembly line may require high strength movements of the shoulder, arm, and hand and may result in musculoskeletal disorders. With the objective to offset the weight of the arm and thereby lower the forces on the muscles in the shoulder and arm, this actuator is able to provide gravity compensation for the upper extremities of workers, if used in conjunction with an arm exoskeleton. The actuator is passive, meaning that it does not use motors or sensors, but instead creates a force on a cable that is a function of the displacement of the cable. This thesis details the design of the actuator and the selection of an appropriate polymer for use with the actuator. To determine the best polymer for this application, tests were conducted on nine polymers to ind their average Young's modulus and their hysteresis. A 90A abrasion-resistant polyurethane rubber belt was used in the final design due to its high modulus and low hysteresis. The final actuator design was tested in an Instron machine to validate its performance. During testing, the actuator provided 720N in extension and 530N in retraction, which are roughly 112% and 83% of the torque required to lift a human arm, respectively.
- Design, Analysis and Testing of a Self-reactive Wave Energy Point Absorber with Mechanical Power Take-offLi, Xiaofan (Virginia Tech, 2020-11-06)Ocean wave as a renewable energy source possesses great potential for solving the world energy crisis and benefit human beings. The total theoretical potential wave power on the ocean-facing coastlines of the world is around 30,000 TWh, although cannot all be adopted for generating electricity, the amount of the power can be absorbed still can occupy a large portion of the world's total energy consumption. However, multiple reasons have stopped the ocean wave energy from being widely adopted, and among those reasons, the most important one is immature of the Power Take-off (PTO) technology. In this dissertation, a self-reactive two-body wave energy point absorber that is embedded with a novel PTO using the unique mechanism of Mechanical Motion Rectifier (MMR) is investigated through design, analysis and testing to improve the energy harvesting efficiency and the reliability of the PTO. The MMR mechanism can transfer the reciprocated bi-directional movement of the ocean wave into unidirectional rotation of the generator. As a result, this mechanism brings in two advantages towards the PTO. The first advantage it possess is that the alternating stress of the PTO is changed into normal stress, hence the reliability of the components are expected to be improved significantly. The other advantage it brings in is a unique phenomenon of engagement and disengagement during the operation, which lead to a piecewise nonlinear dynamic property of the PTO. This nonlinearity of the PTO can contribute to an expanded frequency domain bandwidth and better efficiency, which are verified through both numerical simulation and in-lab experiment. During the in-lab test, the prototyped PTO achieved energy transfer efficiency as high as 81.2%, and over 40% of efficiency improvement compared with the traditional non-MMR PTO under low-speed condition, proving the previously proposed advantage. Through a more comprehensive study, the MMR PTO is further characterized and a refined dynamic model. The refined model can accurately predict the dynamic response of the PTO. The major factors that can influence the performance of the MMR PTO, which are the inertia of the PTO, the damping coefficient, and the excitation frequency, are explored through analysis and experiment comprehensively. The results show that the increase on the inertia of the PTO and excitation frequency, and decrease on the damping coefficient can lead to a longer disengagement of the PTO and can be expressed analytically. Besides the research on the PTO, the body structure of the point absorber is analyzed. Due to the low-frequency of the ocean wave excitation, usually a very large body dimension for the floating buoy of the point absorber is desired to match with that frequency. To solve this issue, a self-reactive two-body structure is designed where an additional frequency between the two interactive bodies are added to match the ocean wave frequency by adopting an additional reactive submerged body. The self-reactive two-body structure is tested in a wave to compare with the single body design. The results show that the two-body structure can successfully achieve the frequency matching function, and it can improve more than 50% of total power absorption compared with the single body design.
- Design, Modeling and Control of Vibration Systems with Electromagnetic Energy Harvesters and their Application to Vehicle SuspensionsLiu, Yilun (Virginia Tech, 2016-11-07)Instead of dissipating vibration energy into heat waste via viscous damping elements, this dissertation proposes an innovative vibration control method which can simultaneously mitigate vibration and harvest the associated vibration energy using electromagnetic energy harvesters. This dissertation shows that the electromagnetic energy harvester can work as a controllable damper as well as an energy harvester. The semi-active control of a linear electromagnetic energy harvester, for improvement of suspension performance, has been experimentally implemented in a scaled-down quarter-car suspension system. While improving performance, power produced by the harvester can be harvested through energy harvesting circuits. This dissertation also proposes a mechanical-motion-rectifier(MMR)-based electromagnetic energy harvester using a ball-screw mechanism and two one-way clutches for the application of replacing the viscous damper in vehicle suspensions. Compared to commercial linear harvesters, the proposed design is able to provide large damping forces and increase power-dissipation density, making it suitable to vehicle suspensions. In addition, the proposed MMR-based harvester can convert reciprocating vibration into unidirectional rotation of the generator. This feature significantly increases energy-harvesting efficiency by enabling the generator to rotate at a relatively steady speed during irregular vibrations and improves the system reliability by reducing impact forces among transmission gears. Extensive theoretical and experimental analysis have been conducted to characterize the proposed MMR-based energy harvester. The coupled dynamics of the suspension system with the MMR-based energy harvester are also explored and optimized. Furthermore, a new control algorithm is proposed to control the MMR-based energy harvester considering its unique dynamics induced by the one-way clutches. The results show that the controlled proposed electromagnetic energy harvester can possibly improve ride comfort of vehicles over conventional oil dampers and simultaneously harvest the associated vibration energy.
- Design, Modeling and Tests of Electromagnetic Energy Harvesting Systems for Railway Track and Car ApplicationsPan, Yu (Virginia Tech, 2020-01-22)This study proposes various methods to harvest the mechanical energy present in railcar suspensions and railroad tracks to generate electricity that is suitable for onboard or trackside electronics, using electromagnetic generators. Compact electromagnetic energy harvesters that can be installed onboard railcars or wayside on railroad tracks are designed, fabricated, and tested. The designs integrate a mechanical motion rectifier (MMR) with embedded one-way clutches in the bevel gears in order to convert the bi-directional mechanical energy that commonly exists in the form of vibrations into a unidirectional rotation of the generator. The ball screw mechanism is configured such that it has reduced backlash and thus can more efficiently harvest energy from low-amplitude vibrations. Two prototype harvesters are fabricated and tested extensively in the laboratory using a suspension dynamometer and in the field onboard a railcar and on a test track. A power management system with an energy storage circuit has also been developed for this onboard harvester. The laboratory evaluation indicate that the harvesters are capable of harvesting power with sufficient current and voltage for successfully powering light electronics or charging a low demand battery pack. The harvested power varies widely from a few to tens of Watts, depending on the resistive load across the harvester and the amplitude and frequency of the mechanical motion. The laboratory test results are verified through field testing. One harvester is tested onboard a freight railcar, placing it across the wedge suspension, to use the small amount of relative displacement at the wedge suspension to harvest energy. A second harvester is placed on a test track to use the vertical motion that occurs due to passing wheels for wayside energy harvesting. Both onboard and wayside tests confirm the laboratory test results in terms of the success of the design concept in providing low-power electrical power. The harvester design is further integrated into a conventional railroad tie for ease of field installation and for improving the efficiency of harvesting the mechanical energy at the rail. The integrated design, referred to as the "smart tie," not only protects the energy harvester, the wiring harness, and supporting electronics from the maintenance-of-the-way equipment, but also positions the harvester in a mechanically advantageous position that can maximize the track-induced motion, and hence the harvested power. Although for testing purposes, the smart tie uses a modified composite tie, it can be integrated into other track tie arrangements that are used for revenue service track, including concrete and wooden ties. A prototype smart tie is fabricated for laboratory testing, and the results nearly surpass the results obtained earlier from the wayside harvester. The smart tie is currently being considered for revenue service field testing over an extended length of time, potentially at a railroad mega site or similarly suitable location.
- Discontinuities, Balance Laws, and Material MomentumSingh, Harmeet (Virginia Tech, 2019-01-10)This dissertation presents an analytical study of a class of problems involving discontinuities, also referred to as shocks, propagating through one dimensional flexible objects such as strings and rods. The study entails interrogation of the classical balance laws of momentum, angular momentum, and energy across propagating discontinuities. A major part of this dissertation also concerns itself with a non-classical entity called the ``material momentum''. The balance of material momentum is studied in a variational context, where both the local and singular forms of it are derived from an action principle. A distinguishing aspect of discontinuities propagating in continua is that, unlike in the bulk, the balance of momentum and angular momentum are not sufficient to describe their mechanics, even when the discontinuities are energy conserving. In this work, it is shown that the additional information required to close the system of equations at propagating discontinuities can be obtained from the singular form of energy balance across them. This entails splitting of the energy balance by its invariance properties, and identifying the non-invariant and invariant part of the source term with the power input and energy dissipation respectively at the shock. This approach is in contrast with other treatments of such problems in the literature, where additional non-classical concepts such as ``material momentum'' and ``configurational force'' have been invoked. To further our understanding of the connections between the classical and non-classical approaches to problems involving discontinuities, a detailed exposition of the concept of material momentum is presented. The balance and conservation laws associated with material momentum are derived from an action principle. It is shown that the conservation of material momentum is associated with the material symmetry of the continuum, and that the conditions for the conservation of physical and material momentum are independent of each other. A new classification of the deformed configurations of the planar Euler elastica based on conserved quantities associated with the spatial and material symmetry of the rod is proposed. The manifestation of the balance of material momentum in seemingly unrelated fields of research, such as fracture mechanics, ideal fluids, and the mechanics of rods with discontinuities, is also discussed.
- Dynamics of High-Speed Planetary Gears with a Deformable RingWang, Chenxin (Virginia Tech, 2019-10-17)This work investigates steady deformations, measured spectra of quasi-static ring deformations, natural frequencies, vibration modes, parametric instabilities, and nonlinear dynamics of high-speed planetary gears with an elastically deformable ring gear and equally-spaced planets. An analytical dynamic model is developed with rigid sun, carrier, and planets coupled to an elastic continuum ring. Coriolis and centripetal acceleration effects resulting from carrier and ring gear rotation are included. Steady deformations and measured spectra of the ring deflections are examined with a quasi-static model reduced from the dynamic one. The steady deformations calculated from the analytical model agree well with those from a finite element/contact mechanics (FE/CM) model. The spectra of ring deflections measured by sensors fixed to the rotating ring, space-fixed ground, and the rotating carrier are much different. Planet mesh phasing significantly affects the measured spectra. Simple rules are derived to explain the spectra for all three sensor locations for in-phase and out-of-phase systems. A floating central member eliminates spectral content near certain mesh frequency harmonics for out-of-phase systems. Natural frequencies and vibration modes are calculated from the analytical dynamic model, and they compare well with those from a FE/CM model. Planetary gears have structured modal properties due to cyclic symmetry, but these modal properties are different for spinning systems with gyroscopic effects and stationary systems without gyroscopic effects. Vibration modes for stationary systems are real-valued standing wave modes, while those for spinning systems are complex-valued traveling wave modes. Stationary planetary gears have exactly four types of modes: rotational, translational, planet, and purely ring modes. Each type has distinctive modal properties. Planet modes may not exist or have one or more subtypes depending on the number of planets. Rotational, translational, and planet modes persist with gyroscopic effects included, but purely ring modes evolve into rotational or one subtype of planet modes. Translational and certain subtypes of planet modes are degenerate with multiplicity two for stationary systems. These modes split into two different subtypes of translational or planet modes when gyroscopic effects are included. Parametric instabilities of planetary gears are examined with the analytical dynamic model subject to time-varying mesh stiffness excitations. With the method of multiple scales, closed-form expressions for the instability boundaries are derived and verified with numerical results from Floquet theory. An instability suppression rule is identified with the modal structure of spinning planetary gears with gyroscopic effects. Each mode is associated with a phase index such that the gear mesh deflections between different planets have unique phase relations. The suppression rule depends on only the modal phase index and planet mesh phasing parameters (gear tooth numbers and the number of planets). Numerical integration of the analytical model with time-varying mesh stiffnesses and tooth separation nonlinearity gives dynamic responses, and they compare well with those from a FE/CM model. Closed-form solutions for primary, subharmonic, superharmonic, and second harmonic resonances are derived with a perturbation analysis. These analytical results agree well with the results from numerical integration. The analytical solutions show suppression of certain resonances as a result of planet mesh phasing. The tooth separation conditions are analytically determined. The influence of the gyroscopic effects on dynamic response is examined numerically and analytically.
- Energy Harvesting from the Human Body for Wearable and Mobile DevicesLiu, Mingyi (Virginia Tech, 2020-07-08)Wearable and mobile devices are an important part of our daily life. Most of those devices are powered by batteries. The limited life span of batteries constitutes a limitation, especially in a multiple-day expedition, where electrical power can not access conveniently. At the same time, there is a huge amount of energy stored in the human body. While walking, there is a large amount of power dissipated in the human body as negative muscle work and the energy loss by impact. By sourcing locally and using locally, human body energy harvesting is a promising solution. This dissertation focuses on harvesting energy from the human body to power wearable and mobile devices while poses a minimum burden on the human body. Three topics related to the human body energy harvesting are explored, i.e, energy harvesting backpack, negative muscle work harvester, and energy harvesting tile/paver. The energy harvesting backpack was invented in 2006. Extensive work was done to improve the performance of backpack energy harvester. The backpack is modeled as a spring-mass-damper system. Mechanical Motion Rectifier was added to the spring-mass-damper system to increase the frequency bandwidth. A spring is added to the spring-mass-damper system, between the harvester and the backpack mass, and a inerter-based 2DOF (degree-of-freedom) backpack is created. The inerter-based 2DOF backpack improves the power output, frequency bandwidth, and power stroke ratio performance. MMR was added to the inerter-based 2DOF backpack to reduce the peak stroke. Compared with the conventional spring-mass-damper backpack, the MMR and inerter-based 2DOF backpack can harvest more power with large bandwidth at a small sacrifice of stroke. The electric damping was also tuned to increase the power output and bandwidth for the energy harvesting backpack. The negative work harvester mounts on the human ankle and harvests energy in the terminal stance phase in human walking, when the calf muscle is doing negative muscle work. This harvester is an analogy to regenerative brake in vehicles. The energy harvesting paver/tile harvests energy when the heel contacts with ground and energy are dissipated by impact.
- Enhanced Energy Harvesting for Rotating Systems using Stochastic ResonanceKim, Hongjip (Virginia Tech, 2020-02-05)Energy harvesting from the rotating system has been an influential topic for researchers over the past several years. Yet, most of these harvesters are linear resonance-based harvesters whose output power drops dramatically under random excitations. This poses a serious problem because a lot of vibrations in rotating systems are stochastic. In this dissertation, a novel energy harvesting strategy for rotating systems was proposed by taking advantage of stochastic resonance. Stochastic resonance is referred to as a physical phenomenon that is manifest in nonlinear bistable systems whereby a weak periodic signal can be significantly amplified with the aid of inherent noise or vice versa. Stochastic resonance can thus be used to amplify the noisy and weak vibration motion. Through mathematical modeling, this dissertation shows that stochastic resonance is particularly favorable to energy harvesting in rotating systems. The conditions for stochastic resonance are satisfied by adding a nonlinear bistable energy harvester to the rotating system because whirl noise and periodic signalㄴ already coexist in the rotating environment. Both numerical and experimental results show that stochastic resonance energy harvester has higher power and wider bandwidth than linear harvesters under a rotating environment. The dissertation also investigates how stochastic resonance changes for the various types of excitation that occur in real-world applications. Under the non-gaussian noise, the stochastic resonance frequency is shifted larger value. Furthermore, the co-existence of the vibrational and stochastic resonance is observed depending on the periodic signal to noise ratio. The dissertation finally proposed two real applications of stochastic resonance energy harvesting. First, stochastic resonance energy harvester for oil drilling applications is presented. In the oil drilling environment, the periodic force in rotating shafts is biased, which can lower the efficacy of stochastic resonance. To solve the problem, an external magnet was placed above the bi-stable energy harvester to compensate for the biased periodic signal. Energy harvester for smart tires is also proposed. The passively tuned system is implemented in a rotating tire via centrifugal force. An inward-oriented rotating beam is used to induce bistability via the centrifugal acceleration of the tire. The results show that larger power output and wider bandwidth can be obtained by applying the proposed harvesting strategy to the rotating system.
- Hydrodynamic Design Optimization and Wave Tank Testing of Self-Reacting Two-Body Wave Energy ConverterMartin, Dillon Minkoff (Virginia Tech, 2017-11-09)As worldwide energy consumption continues to increase, so does the demand for renewable energy sources. The total available wave energy resource for the United States alone is 2,640 TWh/yr; nearly two thirds of the 4,000 TWh of electricity used in the United States each year. It is estimated that nearly half of that available energy is recoverable through wave energy conversion techniques. In this thesis, a two-body 'point absorber' type wave energy converter with a mechanical power-takeoff is investigated. The two-body wave energy converter extracts energy through the relative motion of a floating buoy and a neutrally buoyant submerged body. Using a linear frequency-domain model, analytical solutions of the optimal power and the corresponding power-takeoff components are derived for the two-body wave energy converter. Using these solutions, a case study is conducted to investigate the influence of the submerged body size on the absorbed power of the device in regular and irregular waves. Here it is found that an optimal mass ratio between the submerged body and floating buoy exists where the device will achieve resonance. Furthermore, a case study to investigate the influence of the submerged body shape on the absorbed power is conducted using a time-domain numerical model. Here it is found that the submerged body should be designed to reduce the effects of drag, but to maintain relatively large hydrodynamic added mass and excitation force. To validate the analytical and numerical models, a 1/30th scale model of a two-body wave energy converter is tested in a wave tank. The results of the wave tank tests show that the two-body wave energy converter can absorb nearly twice the energy of a single-body 'point absorber' type wave energy converter.
- Modal Analysis of General Cyclically Symmetric Systems with Applications to Multi-Stage StructuresDong, Bin (Virginia Tech, 2019-10-10)This work investigates the modal properties of general cyclically symmetric systems and the multi-stage systems with cyclically symmetric stages. The work generalizes the modal properties of engineering applications, such as planetary gears, centrifugal pendulum vibration absorber (CPVA) systems, multi-stage planetary gears, etc., and provides methods to improve the computational efficiency to numerically solve the system modes when cyclically symmetric structures exist. Modal properties of cyclically symmetric systems with vibrating central components as three-dimensional rigid bodies are studied without any assumptions on the system matrix symmetries: asymmetric inertia matrix, damping, gyroscopic, and circulatory terms can be present. In the equation of motion of such a cyclically symmetric system, the matrix operators are proved to have properties related to the cyclic symmetry. These symmetry-related properties are used to prove the modal properties of general cyclically symmetric systems. Only three types of modes can exist: substructure modes, translational-tilting modes, and rotational-axial modes. Each mode type is characterized by specific central component modal deflections and substructure phase relations. Instead of solving the full eigenvalue problem,all vibration modes and natural frequencies can be obtained by solving smaller eigenvalue problems associated with each mode type. This computational advantage is dramatic for systems with many substructures or many degrees of freedom per substructure. Group theory is applied to further generalize the modal properties of cyclically symmetric systems when both rigid-body and compliant central components exist, such as planetary gears with an elastic continuum ring gear. The group theory for symmetry groups is introduced, and the group-theory-based modal analysis does not rely on any knowledge of the properties of system matrices in system equations of motion. The three types of modes (substructure modes, translational-tilting modes, and rotational-axial modes) are characterized by specific rigid-body central component modal defections, substructure phase relations, and nodal diameter components of compliant central components. The general formulation of reduced eigenvalue problems for each mode type is obtained through group-theory-based method, and it applies to discrete, continuous, or hybrid discrete-continuous cyclically symmetric systems. The group-theory-based modal analysis also applies to systems with other symmetry types. The group-theory-based modal analysis is generalized to analyze the multi-stage systems that are composed of symmetric stages coupled through the motions of rigid-body central components. The proposed group-theory-based modal analysis applies to multi-stage systems with cyclically symmetric stages, such as multi-stage planetary gears and CPVA systems with multiple groups of absorbers. The method also applies to multi-stage systems with component stages that have different types of symmetry. For a multi-stage system with symmetric stages, a unitary transformation matrix can be built through an algorithmic and computationally inexpensive procedure. The obtained unitary transformation matrix provides the foundation to analyze the modal properties based on the principles of group-theory-based modal analysis. For general multi-stage systems with symmetric component stages, the vibration modes are classified into two general types, single-stage substructure modes and overall modes, according to the non-zero modal deflections in each component stage. Reduced eigenvalue problems for each mode type are formulated to reduce the computational cost for eigensolutions. Finite element models of multi-stage bladed disk assemblies consist of multiple cyclically symmetric bladed disks that are coupled through the boundary nodes at the inter-stage interface. To improve the computational efficiency of calculating the full system modes, a numerical method is proposed by combination of the multi-stage cyclic symmetry reduction method and the subspace iteration method. Compared to the multi-stage cyclic symmetry reduction method, the proposed method improves the accuracy of obtained eigensolutions through an iterative process that is derived from the subspace iteration method. Based on the cyclic symmetry in each component stage of bladed disk, the proposed iterative method that can be performed using single stage sector models only, instead of using matrix operators for the full multi-stage bladed disks. Parallel computations can be performed in the proposed iterative method, and the computational speed for eigensolutions can be increased significantly.
- Multi-Bayesian Approach to Stochastic Feature Recognition in the Context of Road Crack Detection and ClassificationSteckenrider, John J. (Virginia Tech, 2017-12-04)This thesis introduces a multi-Bayesian framework for detection and classification of features in environments abundant with error-inducing noise. The approach takes advantage of Bayesian correction and classification in three distinct stages. The corrective scheme described here extracts useful but highly stochastic features from a data source, whether vision-based or otherwise, to aid in higher-level classification. Unlike many conventional methods, these features’ uncertainties are characterized so that test data can be correctively cast into the feature space with probability distribution functions that can be integrated over class decision boundaries created by a quadratic Bayesian classifier. The proposed approach is specifically formulated for road crack detection and characterization, which is one of the potential applications. For test images assessed with this technique, ground truth was estimated accurately and consistently with effective Bayesian correction, showing a 33% improvement in recall rate over standard classification. Application to road cracks demonstrated successful detection and classification in a practical domain. The proposed approach is extremely effective in characterizing highly probabilistic features in noisy environments when several correlated observations are available either from multiple sensors or from data sequentially obtained by a single sensor.
- Multi-source Energy Harvesting for Wildlife TrackingWu, You (Virginia Tech, 2015-07-06)Sufficient power supply to run GPS machinery and transmit data on a long-term basis remains to be the key challenge for wildlife tracking technology. Traditional ways of replacing battery periodically is not only time and money consuming but also dangerous to live-trapping wild animals. In this paper, an innovative wildlife tracking collar with multi-source energy harvester with advantage of high efficiency and reliability is proposed. This multi-source energy harvester entails a solar energy harvester and an innovative rotational electromagnetic energy harvester is mounted on the "wildlife tracking collar" which will extend the duration of wild life tracking by 20% time as was estimated. A feedforward and feedback control of DC-DC converter circuit is adopted to passively realize the Maximum Power Point Tracking (MPPT) logic for the solar energy harvester. A novel electromagnetic pendulum energy harvester with motion regulator is proposed which can mechanically rectify the irregular bidirectional swing motion of the pendulum into unidirectional rotational motion of the motor. No electrical rectifier is needed and voltage drops from diodes can be avoided, the EM pendulum energy harvester can provide 200~300 mW under the 0.4g base excitation of 4.5 Hz. The nonlinearity of the disengage mechanism in the pendulum energy harvester will lead to a broad bandwidth frequency response. Simulation results shows the broadband advantage of the proposed energy harvester and experiment results verified that at some frequencies over the natural frequency the efficiency is increased.
- Non-Field-of-View Acoustic Target EstimationTakami, Kuya (Virginia Tech, 2015-10-12)This dissertation proposes a new framework to Non-Field-of-view (NFOV) sound source localization and tracking in indoor environments. The approach takes advantage of sound signal information to localize target position through auditory sensors combination with other sensors within grid-based recursive estimation structure for tracking using nonlinear and non-Gaussian observations. Three approaches to NFOV target localization are investigated. These techniques estimate target positions within the Recursive Bayesian estimation (RBE) framework. The first proposed technique uses a numerical fingerprinting solution based on acoustic cues of a fixed microphone array in a complex indoor environment. The Interaural level differences (ILDs) of microphone pair from a given environment are constructed as an a priori database, and used for calculating the observation likelihood during estimation. The approach was validated in a parametrically controlled testing environment, and followed by real environment validations. The second approach takes advantage of acoustic sensors in combination with an optical sensor to assist target estimation in NFOV conditions. This hybrid of the two sensors constructs observation likelihood through sensor fusion. The third proposed model-based technique localizes the target by taking advantage of wave propagation physics: the properties of sound diffraction and reflection. This approach allows target localization without an a priori knowledge database which is required for the first two proposed techniques. To demonstrate the localization performance of the proposed approach, a series of parameterized numerical and experimental studies were conducted. The validity of the formulation and applicability to the actual environment were confirmed.
- Nonlinear Dynamics and Vibration of Gear and Bearing Systems using A Finite Element/Contact Mechanics Model and A Hybrid Analytical-Computational ModelDai, Xiang (Virginia Tech, 2017-09-11)This work investigates the dynamics and vibration in gear systems, including spur and helical gear pairs, idler gear trains, and planetary gears. The spur gear pairs are analyzed using a finite element/contact mechanics (FE/CM) model. A hybrid analytical-computational (HAC) model is proposed for nonlinear gear dynamics. The HAC predictions are compared with FE/CM results and available experimental data for validation. Chapter 2 investigates the static and dynamic tooth root strains in spur gear pairs using a finite element/contact mechanics approach. Extensive comparisons with experiments, including those from the literature and new ones, confirm that the finite element/contact mechanics formulation accurately predicts the tooth root strains. The model is then used to investigate the features of the tooth root strain curves as the gears rotate kinematically and the tooth contact conditions change. Tooth profile modifications are shown to strongly affect the shape of the strain curve. The effects of strain gage location on the shape of the static strain curves are investigated. At non-resonant speeds the dynamic tooth root strain curves have similar shapes as the static strain curves. At resonant speeds, however, the dynamic tooth root strain curves are drastically different because large amplitude vibration causes tooth contact loss. There are three types of contact loss nonlinearities: incomplete tooth contact, total contact loss, and tooth skipping, and each of these has a unique strain curve. Results show that different operating speeds with the same dynamic transmission error can have much different dynamic tooth strain. Chapters 3, 4, and 5 develops a hybrid-analytical-computational (HAC) method for nonlinear dynamic response in gear systems. Chapter 3 describes the basic assumptions and procedures of the method, and implemented the method on two-dimensional vibrations in spur gear pairs. Chapters 4 and 5 extends the method to two-dimensional multi-mesh systems and three-dimensional single-mesh systems. Chapter 3 develops a hybrid analytical-computational (HAC) model for nonlinear dynamic response in spur gear pairs. The HAC model is based on an underlying finite element code. The gear translational and rotational vibrations are calculated analytically using a lumped parameter model, while the crucial dynamic mesh force is calculated using a force-deflection function that is generated from a series of static finite element analyses before the dynamic calculations. Incomplete tooth contact and partial contact loss are captured by the static finite element analyses, and included in the force-deflection function. Elastic deformations of the gear teeth, including the tooth root strains and contact stresses, are calculated. Extensive comparisons with finite element calculations and available experiments validate the HAC model in predicting the dynamic response of spur gear pairs, including near resonant gear speeds when high amplitude vibrations are excited and contact loss occurs. The HAC model is five orders of magnitude faster than the underlying finite element code with almost no loss of accuracy. Chapter 4 investigates the in-plane motions in multi-mesh systems, including the idler chain systems and planetary gear systems, using the HAC method that introduced in Chap. 3. The details of how to implement the HAC method into those systems are explained. The force-deflection function for each mesh is generated individually from a series of static finite element analyses before the dynamic calculations. These functions are used to calculated the dynamic mesh force in the analytical dynamic analyses. The good agreement between the FE/CM and HAC results for both the idler chain and planetary gear systems confirms the capability of the HAC model in predicting the in-plane dynamic response for multi-mesh systems. Conventional softening type contact loss nonlinearities are accurately predicted by HAC method for these multi-mesh systems. Chapter 5 investigates the three-dimensional nonlinear dynamic response in helical gear pairs. The gear translational and rotational vibrations in the three-dimensional space are calculated using an analytical model, while the force due to contact is calculated using the force-deflection. The force-deflection is generated individually from a series of static finite element analyses before the dynamic calculations. The effect of twist angle on the gear tooth contact condition and dynamic response are included. The elastic deformations of the gear teeth along the face-width direction are calculated, and validated by comparing with the FE/CM results.
- Performance Analysis and Tank Test Validation of a Hybrid Wave-Current Energy Converter with a Single Power TakeoffJiang, Boxi (Virginia Tech, 2020-07-01)Marine and hydrokinetic (MHK) energy, including ocean waves, tidal current, ocean current and river current, has been recognized as a promising power source due to its full-day availability and high energy potential. At this stage, ocean current energy, tidal energy and ocean wave energy are currently the most competitive sourves among all the categories of MHK. The state of art MHK energy harvesting technology mainly focus on harvesting either ocean wave energy or current energy, but not both. However, a significant amount of ocean waves and tidal/ ocean current coexist in many sites and traditional devices that harvest from a single form of MHK energy, cannot make full use of the coexisting ocean energy. Furthermore, MHK energy harvesting devices need to advance to be cost-effective and competitive with other energy sources. This is difficult to achieve. Ocean wave excitation is irregular, which means that ocean wave height and wave periods are unpredictable and excitation forces on energy harvesting devices can have large variance in amplitude and frequency. Such problems/ restrictions can be possibly addressed by the concept of a hybrid energy converter. In this sense, a hybrid wave-current ocean energy conveter (HWCEC) that simutaneously harvests energy from current and wave with one single power takeoff (PTO) is designed.The wave energy is extracted through relative heaving motion between a floating buoy and a submerged second body, while the current energy is extracted using a marine current turbine (MCT). Energy from both sources are integrated by a hybrid PTO whose concept is based on a mechanical motion rectifier (MMR). In this study, different working modes are investigated together with switching criteria.Simulations were conducted with hydrodynamic coefficients obtained from computational fluid dynamics analysis and boundary element method. Tank tests were conducted for a HWCEC under co-existing wave and current inputs. For comparison, separate baseline tests of a turbine and a two-body point absorber, each acting in isolation, are conducted. Experimental results validate the dynamic modeling and show that a HWCEC can increase the output power with a range between 29-87 percent over either current turbine and wave energy converter acting individually, and it can reduce by up to 70 percent the peak-to-average power ratio compared with the wave energy converter on the tested conditions.Such results demonstrate the potential of the HWCEC as an efficient and cost-effective design.