Multi-Bayesian Approach to Stochastic Feature Recognition in the Context of Road Crack Detection and Classification

TR Number

Date

2017-12-04

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This thesis introduces a multi-Bayesian framework for detection and classification of features in environments abundant with error-inducing noise. The approach takes advantage of Bayesian correction and classification in three distinct stages. The corrective scheme described here extracts useful but highly stochastic features from a data source, whether vision-based or otherwise, to aid in higher-level classification. Unlike many conventional methods, these features’ uncertainties are characterized so that test data can be correctively cast into the feature space with probability distribution functions that can be integrated over class decision boundaries created by a quadratic Bayesian classifier. The proposed approach is specifically formulated for road crack detection and characterization, which is one of the potential applications. For test images assessed with this technique, ground truth was estimated accurately and consistently with effective Bayesian correction, showing a 33% improvement in recall rate over standard classification. Application to road cracks demonstrated successful detection and classification in a practical domain. The proposed approach is extremely effective in characterizing highly probabilistic features in noisy environments when several correlated observations are available either from multiple sensors or from data sequentially obtained by a single sensor.

Description

Keywords

Bayesian classification, Crack detection, Road condition monitoring, Recursive Bayesian estimation, Stochastic features, Machine learning, Computer vision

Citation

Collections