Browsing by Author "Sheng, Zhi"
Now showing 1 - 20 of 23
Results Per Page
Sort Options
- Casein Kinase 1 Epsilon Regulates Glioblastoma Cell SurvivalVarghese, Robin T.; Young, Sarah; Pham, Lily; Liang, Yanping; Pridham, Kevin J.; Guo, Sujuan; Murphy, Susan F.; Kelly, Deborah F.; Sheng, Zhi (Nature, 2018-09-11)Glioblastoma is the most common malignant brain cancer with a dismal prognosis. The difficulty in treating glioblastoma is largely attributed to the lack of effective therapeutic targets. In our previous work, we identified casein kinase 1 ε (CK1ε, also known as CSNK1E) as a potential survival factor in glioblastoma. However, how CK1ε controls cell survival remains elusive and whether targeting CK1ε is a possible treatment for glioblastoma requires further investigation. Here we report that CK1ε was expressed at the highest level among six CK1 isoforms in glioblastoma and enriched in high-grade glioma, but not glia cells. Depletion of CK1ε remarkably inhibited the growth of glioblastoma cells and suppressed self-renewal of glioblastoma stem cells, while having limited effect on astrocytes. CK1ε deprivation activated β-catenin and induced apoptosis, which was further counteracted by knockdown of β-catenin. The CK1ε inhibitor IC261, but not PF-4800567, activated β-catenin and blocked the growth of glioblastoma cells and glioblastoma stem cells. Congruently, IC261 elicited a robust growth inhibition of human glioblastoma xenografts in mice. Together, our results demonstrate that CK1ε regulates the survival of glioblastoma cells and glioblastoma stem cells through β-catenin signaling, underscoring the importance of targeting CK1ε as an effective treatment for glioblastoma.
- Connexin 43 confers chemoresistance through activating PI3KPridham, Kevin J.; Shah, Farah; Hutchings, Kasen R.; Sheng, Kevin L.; Guo, Sujuan; Liu, Min; Kanabur, Pratik; Lamouille, Samy Y.; Lewis, Gabrielle; Morales, Marc; Jourdan, L. Jane; Grek, Christina L.; Ghatnekar, Gautam S.; Varghese, Robin T.; Kelly, Deborah F.; Gourdie, Robert G.; Sheng, Zhi (Springer Nature, 2022-01-12)Circumventing chemoresistance is crucial for effectively treating cancer including glioblastoma, a lethal brain cancer. The gap junction protein connexin 43 (Cx43) renders glioblastoma resistant to chemotherapy; however, targeting Cx43 is difficult because mechanisms underlying Cx43-mediated chemoresistance remain elusive. Here we report that Cx43, but not other connexins, is highly expressed in a subpopulation of glioblastoma and Cx43 mRNA levels strongly correlate with poor prognosis and chemoresistance in this population, making Cx43 the prime therapeutic target among all connexins. Depleting Cx43 or treating cells with αCT1–a Cx43 peptide inhibitor that sensitizes glioblastoma to the chemotherapy temozolomide–inactivates phosphatidylinositol-3 kinase (PI3K), whereas overexpression of Cx43 activates this signaling. Moreover, αCT1-induced chemo-sensitization is counteracted by a PI3K active mutant. Further research reveals that αCT1 inactivates PI3K without blocking the release of PI3K-activating molecules from membrane channels and that Cx43 selectively binds to the PI3K catalytic subunit β (PIK3CB, also called PI3Kβ or p110β), suggesting that Cx43 activates PIK3CB/p110β independent of its channel functions. To explore the therapeutic potential of simultaneously targeting Cx43 and PIK3CB/p110β, αCT1 is combined with TGX-221 or GSK2636771, two PIK3CB/p110β-selective inhibitors. These two different treatments synergistically inactivate PI3K and sensitize glioblastoma cells to temozolomide in vitro and in vivo. Our study has revealed novel mechanistic insights into Cx43/PI3K-mediated temozolomide resistance in glioblastoma and demonstrated that targeting Cx43 and PIK3CB/p110β together is an effective therapeutic approach for overcoming chemoresistance.
- Connexin 43 peptidic medicine for glioblastoma stem cellsSheng, Zhi (Elsevier, 2021-02-01)
- Deep Learning for Biological ProblemsElmarakeby, Haitham Abdulrahman (Virginia Tech, 2017-06-14)The last decade has witnessed a tremendous increase in the amount of available biological data. Different technologies for measuring the genome, epigenome, transcriptome, proteome, metabolome, and microbiome in different organisms are producing large amounts of high-dimensional data every day. High-dimensional data provides unprecedented challenges and opportunities to gain a better understanding of biological systems. Unlike other data types, biological data imposes more constraints on researchers. Biologists are not only interested in accurate predictive models that capture complex input-output relationships, but they also seek a deep understanding of these models. In the last few years, deep models have achieved better performance in computational prediction tasks compared to other approaches. Deep models have been extensively used in processing natural data, such as images, text, and recently sound. However, application of deep models in biology is limited. Here, I propose to use deep models for output prediction, dimension reduction, and feature selection of biological data to get better interpretation and understanding of biological systems. I demonstrate the applicability of deep models in a domain that has a high and direct impact on health care. In this research, novel deep learning models have been introduced to solve pressing biological problems. The research shows that deep models can be used to automatically extract features from raw inputs without the need to manually craft features. Deep models are used to reduce the dimensionality of the input space, which resulted in faster training. Deep models are shown to have better performance and less variant output when compared to other shallow models even when an ensemble of shallow models is used. Deep models are shown to be able to process non-classical inputs such as sequences. Deep models are shown to be able to naturally process input sequences to automatically extract useful features.
- Deep Learning for Enhancing Precision MedicineOh, Min (Virginia Tech, 2021-06-07)Most medical treatments have been developed aiming at the best-on-average efficacy for large populations, resulting in treatments successful for some patients but not for others. It necessitates the need for precision medicine that tailors medical treatment to individual patients. Omics data holds comprehensive genetic information on individual variability at the molecular level and hence the potential to be translated into personalized therapy. However, the attempts to transform omics data-driven insights into clinically actionable models for individual patients have been limited. Meanwhile, advances in deep learning, one of the most promising branches of artificial intelligence, have produced unprecedented performance in various fields. Although several deep learning-based methods have been proposed to predict individual phenotypes, they have not established the state of the practice, due to instability of selected or learned features derived from extremely high dimensional data with low sample sizes, which often results in overfitted models with high variance. To overcome the limitation of omics data, recent advances in deep learning models, including representation learning models, generative models, and interpretable models, can be considered. The goal of the proposed work is to develop deep learning models that can overcome the limitation of omics data to enhance the prediction of personalized medical decisions. To achieve this, three key challenges should be addressed: 1) effectively reducing dimensions of omics data, 2) systematically augmenting omics data, and 3) improving the interpretability of omics data.
- Functional Blockade of Small GTPase RAN Inhibits Glioblastoma Cell ViabilitySheng, Kevin L.; Pridham, Kevin J.; Sheng, Zhi; Lamouille, Samy Y.; Varghese, Robin T. (Frontiers, 2019-01-08)Glioblastoma, the most common malignant tumor in the brain, lacks effective treatments and is currently incurable. To identify novel drug targets for this deadly cancer, the publicly available results of RNA interference screens from the Project Achilles database were analyzed. Ten candidate genes were identified as survival genes in 15 glioblastoma cell lines. RAN, member RAS oncogene family (RAN) was expressed in glioblastoma at the highest level among all candidates based upon cDNA microarray data. However, Kaplan-Meier survival analysis did not show any correlation between RAN mRNA levels and patient survival. Because RAN is a small GTPase that regulates nuclear transport controlled by karyopherin subunit beta 1 (KPNB1), RAN was further analyzed together with KPNB1. Indeed, GBM patients with high levels of RAN also had more KPNB1 and levels of KPNB1 alone did not relate to patient prognosis. Through a Cox multivariate analysis, GBM patients with high levels of RAN and KPNB1 showed significantly shorter life expectancy when temozolomide and promotermethylation of O6-methylguanine DNA methyltransferase were used as covariates. These results indicate that RAN and KPNB1 together are associated with drug resistance and GBM poor prognosis. Furthermore, the functional blockade of RAN and KPNB1 by importazole remarkably suppressed cell viability and activated apoptosis in GBM cells expressing high levels of RAN, while having a limited effect on astrocytes and GBM cells with undetectable RAN. Together, our results demonstrate that RAN activity is important for GBM survival and the functional blockade of RAN/KPNB1 is an appealing therapeutic approach.
- High-Resolution Imaging of Human Cancer Proteins Using Microprocessor MaterialsSolares, Maria J.; Jonaid, G. M.; Luqiu, William Y.; Berry, Samantha; Khadela, Janki; Liang, Yanping; Evans, Madison C.; Pridham, Kevin J.; Dearnaley, William J.; Sheng, Zhi; Kelly, Deborah F. (Wiley-V C H , 2022-07-14)Mutations in tumor suppressor genes, such as Tumor Protein 53 (TP53), are heavily implicated in aggressive cancers giving rise to gain- and loss-of-function phenotypes. While individual domains of the p53 protein have been studied extensively, structural information for full-length p53 remains incomplete. Functionalized microprocessor chips (microchips) with properties amenable to electron microscopy permitted us to visualize complete p53 assemblies for the first time. The new structures revealed p53 in an inactive dimeric state independent of DNA binding. Residues located at the protein-protein interface corresponded with modification sites in cancer-related hot spots. Changes in these regions may amplify the toxic effects of clinical mutations. Taken together, these results contribute advances in technology and imaging approaches to decode native protein models in different states of activation.
- Investigating Novel Targets to Inhibit Cancer Cell SurvivalPridham, Kevin J. (Virginia Tech, 2018-04-18)Cancer remains the second leading cause of death in the United States and the world, despite years of research and the development of different treatments. One reason for this is cancer cells are able to survive through adaptation to their environment and aberrantly activated growth signaling. As such, developing new therapies that overcome these hurdles are necessary to combat cancer. Previous work in our laboratory using RNA interference screening identified genes that regulate the survival of glioblastoma (GBM) or autophagy in chronic myelogenous leukemia (CML) cancer cells. One screen identified Phosphatidylinositol-4,5-bisophosphate 3-kinase catalytic subunit beta (PIK3CB) in the family of Phosphatidylinositol 3-kinases (PI3K) as a survival kinase gene in GBM. Work contained in this dissertation set out to study PIK3CB mediated GBM cell survival. We report that only PIK3CB, in its family of other PI3K genes, is a biomarker for GBM recurrence and is selectively important for GBM cell survival. Another screen identified the long non-coding RNA, Linc00467, as a gene that regulates autophagy in CML. Autophagy is a dynamic survival process used by all cells, benign and cancerous, where cellular components are broken down and re-assimilated to sustain survival. Work contained in this dissertation set out to characterize the role that Linc00467 serves in regulating autophagy in a myriad of cancers. Collectively our data have showed Linc00467 to actively repress levels of autophagy in cancer cells. Further, our data revealed an important role for Linc00467 in regulating the stability of the autophagy regulating protein serine-threonine kinase 11 (STK11). Because of the unique role that Linc00467 serves in regulating autophagy we renamed it as, autophagy regulating long intergenic noncoding RNA or ARLINC. Taken together the work in this dissertation unveils the inner-workings of two important cancer cell survival pathways and shows their potential for development into therapeutic targets to treat cancer.
- Investigating the Applications of Electroporation Therapy for Targeted Treatment of Glioblastoma Multiforme Based on Malignant Properties of CellsIvey, Jill Winters (Virginia Tech, 2017-09-05)Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer with an average survival time of 15 months. GBM is considered incurable with even the most aggressive multimodal therapies and is characterized by near universal recurrence. Irreversible electroporation (IRE) is a cellular ablation method currently being investigated as a therapy for a variety of cancers. Application of IRE involves insertion of electrodes into tissue to deliver pulsed electric fields (PEFs), which destabilize the cell membrane past the point of recovery, thereby inducing cell death. While this treatment modality has numerous advantages, the lack of selectivity for malignant cells limits its application in the brain where damage to healthy tissue is especially deleterious. In this dissertation we hypothesize that a form of IRE therapy, high-frequency IRE (H-FIRE), may be able to act as a selective targeted therapy for GBM due to its ability to create an electric field inside a cell to interact with altered inner organelles. Through a comprehensive investigation involving experimental testing combined with numerical modeling, we have attained results in strong support of this hypothesis. Using tissue engineered hydrogels as our platform for therapy testing, we demonstrate selective ablation of GBM cells. We develop mathematical models that predict the majority of the electric field produced by H-FIRE pulses reach the inside of the cell. We demonstrate that the increased nuclear to cytoplasm ratio (NCR) of malignant GBM cells compared to healthy brain—evidenced in vivo and in in vitro tissue mimics—is correlated with greater ablation volumes and thus lower electric field thresholds for cell death when treated with H-FIRE. We enhance the selectivity achieved with H-FIRE using a molecularly targeted drug that induces an increase in NCR. We tune the treatment pulse parameters to increase selective malignant cell killing. Finally, we demonstrate the ability of H-FIRE to ablate therapy-resistant GBM cells which are a focus of many next-generation GBM therapies. We believe the evidence presented in this dissertation represents the beginning stages in the development of H-FIRE as a selective therapy to be used for treatment of human brain cancer.
- A large-scale RNA interference screen identifies genes that regulate autophagy at different stagesGuo, Sujuan; Pridham, Kevin J.; Virbasius, Ching-Man; He, Bin; Zhang, Liqing; Varmark, Hanne; Green, Michael R.; Sheng, Zhi (Nature Publishing Group, 2018-02-12)Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identifies identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.
- A microchip platform for structural oncology applications.Winton, Carly E.; Gilmore, Brian L.; Demmert, Andrew C.; Karageorge, Vasilea; Sheng, Zhi; Kelly, Deborah F. (2016)Recent advances in the development of functional materials offer new tools to dissect human health and disease mechanisms. The use of tunable surfaces is especially appealing as substrates can be tailored to fit applications involving specific cell types or tissues. Here we use tunable materials to facilitate the three-dimensional (3D) analysis of BRCA1 gene regulatory complexes derived from human cancer cells. We employed a recently developed microchip platform to isolate BRCA1 protein assemblies natively formed in breast cancer cells with and without BRCA1 mutations. The captured assemblies proved amenable to cryo-electron microscopy (EM) imaging and downstream computational analysis. Resulting 3D structures reveal the manner in which wild-type BRCA1 engages the RNA polymerase II (RNAP II) core complex that contained K63-linked ubiquitin moieties-a putative signal for DNA repair. Importantly, we also determined that molecular assemblies harboring the BRCA1(5382insC) mutation exhibited altered protein interactions and ubiquitination patterns compared to wild-type complexes. Overall, our analyses proved optimal for developing new structural oncology applications involving patient-derived cancer cells, while expanding our knowledge of BRCA1's role in gene regulatory events.
- Molecular Analysis of BRCA1 in Human Breast Cancer Cells Under Oxidative StressGilmore, Brian L.; Liang, Yanping; Winton, Carly E.; Patel, Kaya; Karageorge, Vasilea; Varano, A. Cameron; Dearnaley, William J.; Sheng, Zhi; Kelly, Deborah F. (Nature Publishing Group, 2017-03-06)The precise manner in which physical changes to the breast cancer susceptibility protein (BRCA1) affect its role in DNA repair events remain unclear. Indeed, cancer cells harboring mutations in BRCA1 suffer from genomic instability and increased DNA lesions. Here, we used a combination of molecular imaging and biochemical tools to study the properties of the BRCA1 in human cancer cells. Our results reveal new information for the manner in which full-length BRCA1 engages its binding partner, the BRCA1-associated Ring Domain protein (BARD1) under oxidative stress conditions. We also show how physical differences between wild type and mutated BRCA15382insC impact the cell’s response to oxidative damage. Overall, we demonstrate how clinically relevant changes to BRCA1 affect its structure-function relationship in hereditary breast cancer.
- A Molecular Toolkit to Visualize Native Protein Assemblies in the Context of Human DiseaseGilmore, Brian L.; Winton, Carly E.; Demmert, Andrew C.; Tanner, Justin R.; Bowman, Sam; Karageorge, Vasilea; Patel, Kaya; Sheng, Zhi; Kelly, Deborah F. (Springer Nature, 2015-09-23)We present a new molecular toolkit to investigate protein assemblies natively formed in the context of human disease. The system employs tunable microchips that can be decorated with switchable adaptor molecules to select for target proteins of interest and analyze them using molecular microscopy. Implementing our new streamlined microchip approach, we could directly visualize BRCA1 gene regulatory complexes from patient-derived cancer cells for the first time.
- Novel Prognostic Markers and Therapeutic Targets for GlioblastomaVarghese, Robin (Virginia Tech, 2016-06-23)Glioblastoma is the most common and lethal malignant brain tumor with a survival rate of 14.6 months and a tumor recurrence rate of ninety percent. Two key causes for glioblastomas grim outcome derive from the lack of applicable prognostic markers and effective therapeutic targets. By employing a loss of function RNAi screen in glioblastoma cells we found a list of 20 kinases that can be considered glioblastoma survival kinases. These survival kinases which we term as survival kinase genes, (SKGs) were investigated to find prognostic markers as well as therapeutic targets for glioblastoma. Analyzing these survival kinases in The Cancer Genome Atlas patient database, we found that CDCP1, CDKL5, CSNK1𝜀, IRAK3, LATS2, PRKAA1, STK3, TBRG4, and ULK4 genes could be used as prognostic markers for glioblastoma with or without temozolomide chemotherapeutic treatment as a covariate. For the first time, we found that patients with increased levels of NEK9 and PIK3CB mRNA expression had a higher probability of recurrent tumors. We also discovered that expression of CDCP1, IGF2R, IRAK3, LATS2, PIK3CB, ULK4, or VRK1 in primary glioblastoma tumors was associated with tumor recurrence prognosis. To note, of these recurrent prognostic candidates, PIK3CB expression in recurrent tumor tissue had much higher expression compared to primary tissue. Further investigation in the PI3K pathway showed a strong correlation with recurrence rate, days to recurrence and survival emphasizing the role of PIK3CB in tumor recurrence in glioblastoma. In efforts to find effective therapeutic targets for glioblastoma we used SKGs as potential candidates. We chose the serine/threonine kinase, Casein Kinase 1 Epsilon (CSNK1𝜀) as a target for glioblastoma because multiple shRNAs targeted this gene in our loss of function screen and multiple commercially available inhibitors of this gene are available. Casein kinase 1 epsilon protein and mRNA expression were investigated using computational tools. It was revealed that CSNK1𝜀 expression has higher expression in glioblastoma than normal tissue. To further examine this gene we knocked down (KD) or inhibited CSNK1𝜀 in glioblastoma cells lines and noticed a significant increase in cell death without any significant effect on normal cell lines. KD and inhibition of CSNK1𝜀 in cancer stem cells, a culprit of tumor recurrence, also revealed limited self-renewal and proliferation in cancer stem cells and a significant decrease in cell survival without affecting normal stem cells. Further analysis of downstream effects of CSNK1𝜀 knockdown and inhibition indicate a significant increase in the protein expression of β-catenin (CTNNB1). We found that CSNK1𝜀 KD activated β-catenin, which increased GBM cell death, but can be rescued using CTNNB1 shRNA. Our survival kinase screen, computational analyses, patient database analyses and experimental methods contributed to the discovery of novel prognostic markers and therapeutic targets for glioblastoma.
- Patient-derived glioblastoma stem cells respond differentially to targeted therapiesKanabur, Pratik; Guo, Sujuan; Simonds, Gary S.; Kelly, Deborah F.; Gourdie, Robert G.; Verbridge, Scott S.; Sheng, Zhi (Impact Journals, 2016-12-27)The dismal prognosis of glioblastoma is, at least in part, attributable to the difficulty in eradicating glioblastoma stem cells (GSCs). However, whether this difficulty is caused by the differential responses of GSCs to drugs remains to be determined. To address this, we isolated and characterized ten GSC lines from established cell lines, xenografts, or patient specimens. Six lines formed spheres in a regular culture condition, whereas the remaining four lines grew as monolayer. These adherent lines formed spheres only in plates coated with poly-2-hydroxyethyl methacrylate. The self-renewal capabilities of GSCs varied, with the cell density needed for sphere formation ranging from 4 to 23.8 cells/well. Moreover, a single non-adherent GSC either remained quiescent or divided into two cells in four-seven days. The stem cell identity of GSCs was further verified by the expression of nestin or glial fibrillary acidic protein. Of the two GSC lines that were injected in immunodeficient mice, only one line formed a tumor in two months. The protein levels of NOTCH1 and platelet derived growth factor receptor alpha positively correlated with the responsiveness of GSCs to γ-secretase inhibitor IX or imatinib, two compounds that inhibit these two proteins, respectively. Furthermore, a combination of temozolomide and a connexin 43 inhibitor robustly inhibited the growth of GSCs. Collectively, our results demonstrate that patient-derived GSCs exhibit different growth rates in culture, possess differential capabilities to form a tumor, and have varied responses to targeted therapies. Our findings underscore the importance of patient-derived GSCs in glioblastoma research and therapeutic development.
- A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applicationsGuo, Sujuan; Liang, Yanping; Murphy, Susan F.; Huang, Angela; Shen, Haihong; Kelly, Deborah F.; Sobrado, Pablo; Sheng, Zhi (Taylor & Francis, 2015-03-01)The lack of a rapid and quantitative autophagy assay has substantially hindered the development and implementation of autophagy-targeting therapies for a variety of human diseases. To address this critical issue, we developed a novel autophagy assay using the newly developed Cyto-ID fluorescence dye. We first verified that the Cyto-ID dye specifically labels autophagic compartments with minimal staining of lysosomes and endosomes. We then developed a new Cyto-ID fluorescence spectrophotometric assay that makes it possible to estimate autophagy flux based on measurements of the Cyto-ID-stained autophagic compartments. By comparing to traditional autophagy approaches, we found that this assay yielded a more sensitive, yet less variable, quantification of the stained autophagic compartments and the estimate of autophagy flux. Furthermore, we tested the potential application of this autophagy assay in high throughput research by integrating it into an RNA interference (RNAi) screen and a small molecule screen. The RNAi screen revealed WNK2 and MAP3K6 as autophagy-modulating genes, both of which inhibited the MTOR pathway. Similarly, the small molecule screen identified sanguinarine and actinomycin D as potent autophagy inducers in leukemic cells. Moreover, we successfully detected autophagy responses to kinase inhibitors and chloroquine in normal or leukemic mice using this assay. Collectively, this new Cyto-ID fluorescence spectrophotometric assay provides a rapid, reliable quantification of autophagic compartments and estimation of autophagy flux with potential applications in developing autophagy-related therapies and as a test to monitor autophagy responses in patients being treated with autophagy-modulating drugs.
- Revealing Molecular Adversaries of Human Health Using Advanced Imaging TechnologyVarano, Ann Cameron (Virginia Tech, 2018-12-07)Single particle electron microscopy (EM) allows us to examine the molecular world and gain insights into protein structures implicated in human disease. Visualizing the 3D architecture of the macromolecules can inform drug design and preventative care. While X-ray crystallography and NMR are able to resolve atomic structures, the methodology is better suited for smaller structures with limited flexibility. Single particle EM allows us analyze larger structures that have inherent flexibility. Protein structures can broadly be categorized as symmetry or asymmetric. There are computational advantages when analyzing symmetrical structures. Specifically, structural information can be extrapolated from fewer vantage points. Thus, symmetrical macromolecules are an advantageous for pioneering new methodologies in single particle EM. Rotavirus double layered particles (DLPs) are large macromolecular complexes that display icosahedral symmetry. Previous studies have led to a high resolution structure of transcriptionally inactive rotavirus frozen in time. However, to more fully understand rotavirus we need to examine the structure under transcriptionally active conditions. To expand our understanding, we first evaluated these viral assemblies using cryo-EM under active and inactive conditions. We found both internal and external structural differences. Based on these findings we sought to further our understanding of these nano-machines by developing a liquid cell environment to evaluate their dynamics over time. Our research not only developed a new methodology to evaluate active particles over time, we also found that the mobility of the DLPs were directly correlated to the level of transcriptional activity. When analyzing asymmetrical and flexible protein complexes previous studies have utilized methodologies to limit the proteins' conformational variability. While this does allow for a higher resolution structure, it limits our understanding to a specific orientation and compromises the biological insights. BRCA1 is an asymmetric protein containing a large flexible region and is important in the prevention of breast cancer. We utilize silicon nitride microchips with integrated wells and decorated with a lipid monolayer to capture and image BRCA1 complexes. This imaging platform minimizes heterogeneity and ensures the sample quality while not biasing confirmation. Thus, allowing for high resolution cryo-EM imaging of flexible native proteins. We were able to examine BRCA1 complexes from cells at both the primary and metastatic sites. Our ability to visualize these proteins in their native form provide insights into the variability of BRCA1 in disease progression. We found that BRCA1 complexes isolated from metastatic cells have additional density in the C-terminal domain. Our data suggests this density it due an interaction with p53. Overall, our methodologies highlight the power of single particle EM for studying protein complexes. Furthermore, our findings emphasize the importance of examining protein complexes in their native state.
- The Role of Class IA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunits in GlioblastomaPridham, Kevin J.; Varghese, Robin T.; Sheng, Zhi (Frontiers, 2017-12-15)Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) plays a critical role in the pathogenesis of cancer including glioblastoma, the most common and aggressive form of brain cancer. Targeting the PI3K pathway to treat glioblastoma has been tested in the clinic with modest effect. In light of the recent finding that PI3K catalytic subunits (PIK3CA/p110 alpha, PIK3CB/p110 beta, PIK3CD/p110 delta, and PIK3CG/p110 gamma) are not functionally redundant, it is imperative to determine whether these subunits play divergent roles in glioblastoma and whether selectively targeting PI3K catalytic subunits represents a novel and effective strategy to tackle PI3K signaling. This article summarizes recent advances in understanding the role of PI3K catalytic subunits in glioblastoma and discusses the possibility of selective blockade of one PI3K catalytic subunit as a treatment option for glioblastoma.
- The Role of IkZF Factors in Mediating TH1/TFH Development and FlexibilityBharath Krishnan Nair, Sreekumar (Virginia Tech, 2020-01-24)The ability of cells within the adaptive immune system to develop into specialized subsets allow for a robust and tailored immune response in the advent of an infection or injury. Here, CD4+ T-cells are a crucial component within this system, with subsets such as TH1, TH2, TH17, TFH and TREG cells playing vital roles in propagating cell-mediated immunity. For example, TH1 cells are essential in combating intracellular pathogens such as viruses, while TFH cells communicate with B-cells to optimize antibody responses against an invading pathogen. The development (and functionality) of these subsets is ultimately dictated by the appropriate integration of extracellular cues such as cytokines with cell intrinsic transcription factors, thereby promoting the necessary gene profile. Moreover, the observation that T-helper cells could exhibit a flexible nature (i.e having shared gene profiles and effector functions) not only demonstrate the efficiency of our immune system but also how such flexibility could have unintended consequences during adverse events such as autoimmunity. An important mediator of such flexibility is cytokines. However, the complete network of factors that come together to co-ordinate cytokine mediated plasticity remain unknown. Thus, the work in this dissertation hope to delineate the factors that collaborate to regulate cytokine induced T-helper cell flexibility. As such, we see that in the presence of IL-2, the Ikaros Zinc Finger (IkZF) transcription factor Eos is upregulated in TH1 cells, with this factor playing a significant role in promoting regulatory and effector functions of TH1 cells. Moreover, we show that Eos forms a novel protein complex with STAT5 and promotes STAT5 activity in TH1 cells. However, depleting IL-2 from the micro-environment leads to the upregulation of two other members within the IkZF family, Ikaros and Aiolos. Aiolos in turn collaborate with STAT3, induces Bcl-6 expression within these cells, thus promoting these cells to exhibit characteristic features of TFH cells. The work in this dissertation hopes to advance our understanding of the regulatory mechanisms involved in cytokine mediated T-cell flexibility thereby hoping to open new avenues for the development of novel therapeutic strategies in the event of autoimmunity.
- Selective regulation of chemosensitivity in glioblastoma by phosphatidylinositol 3-kinase betaPridham, Kevin J.; Hutchings, Kasen R.; Beck, Patrick; Liu, Min; Xu, Eileen; Saechin, Erin; Bui, Vincent; Patel, Chinkal; Solis, Jamie; Huang, Leah; Tegge, Allison; Kelly, Deborah F.; Sheng, Zhi (Elsevier, 2024-06-21)Resistance to chemotherapies such as temozolomide is a major hurdle to effectively treat therapy-resistant glioblastoma. This challenge arises from the activation of phosphatidylinositol 3-kinase (PI3K), which makes it an appealing therapeutic target. However, non-selectively blocking PI3K kinases PI3K⍺/β/𝛿/𝛾 has yielded undesired clinical outcomes. It is, therefore, imperative to investigate individual kinases in glioblastoma’s chemosensitivity. Here,wereport that PI3K kinases were unequally expressed in glioblastoma, with levels of PI3Kβ being the highest. Patients deficient of O6-methylguanine-DNA-methyltransferase(MGMT) and expressing elevated levels of PI3Kβ, defined as MGMT-deficient/PI3Kβ-high, were less responsive to temozolomide and experienced poor prognosis. Consistently, MGMT-deficient/PI3Kβ-high glioblastoma cells were resistant to temozolomide. Perturbation of PI3Kβ, but not other kinases, sensitized MGMTdeficient/ PI3Kβ-high glioblastoma cells or tumors to temozolomide. Moreover, PI3Kβ-selective inhibitors and temozolomide synergistically mitigated the growth of glioblastoma stem cells. Our results have demonstrated an essential role of PI3Kβ in chemoresistance, making PI3Kβ-selective blockade an effective chemosensitizer for glioblastoma.