Browsing by Author "Woolsey, Craig A."
Now showing 1 - 20 of 277
Results Per Page
Sort Options
- Active Flight Path Control for an Induced Spin Flight Termination SystemShukla, Poorva Jahnukumar (Virginia Tech, 2017-09-12)In this thesis, we describe a method for controlling the cycle-averaged velocity direction of a fixed-wing aircraft in an unpowered, helical descent. While the aircraft propulsion system is disabled, either intentionally or due to a failure, the aerodynamic control surfaces (aileron, elevator, and rudder) are assumed to be functional. Our approach involves two steps: (i) establishing a stable, steady, helical motion for which the control surfaces are not fully deflected and (ii) modulating the aircraft control surfaces about their nominal positions to ``slant'' the helical flight path in a desired direction relative to the atmosphere, whether to attain a desired impact location, to counter a steady wind, or both. The effectiveness of the control law was evaluated in numerical simulations of a general transport model (GTM).
- Adaptation of Nontraditional Control Techniques to Nonlinear Micro and Macro Mechanical SystemsDaqaq, Mohammed F. (Virginia Tech, 2006-07-28)We investigate the implementation of nontraditional open-loop and closed-loop control techniques to systems at the micro and macro scales. At the macro level, we consider a quay-side container crane. It is known that the United States relies on ocean transportation for 95% of cargo tonnage that moves in and out of the country. Each year over six million loaded marine containers enter U.S. ports. Current growth predictions indicate that container cargo will quadruple in the next twenty years. To cope with this rapid growth, we develop a novel open-loop input-shaping control technique to mitigate payload oscillations on quay-side container cranes. The proposed approach is suitable for automated crane operations, does not require any alterations to the existing crane structure, uses the maximum crane capabilities, and is based on an accurate two-dimensional four-bar-mechanism model of a container crane. The shaped commands are based on a nonlinear approximation of the two-dimensional model frequency and, unlike traditional input-shaping techniques, our approach can account for large hoisting operations. For operator-in-the-loop crane operations, we develop a closed-loop nonlinear delayed-position feedback controller. Key features of this controller are that it: does not require major modifications to the existing crane structure, accounts for motion inversion delays, rejects external disturbances, and is superimposed on the crane operator commands. To validate the controllers, we construct a 1:10 scale model of a 65-ton quay-side container crane. The facility consists of a 7-meter track, 3.5-meter hoisting cables, a trolley, a traverse motor, two hoisting motors, and a 50-pound payload. Using this setup, we demonstrated the effectiveness of the controllers in mitigating payload oscillations in both of the open-loop and closed-loop modes of operation. At the micro level, we consider a micro optical device known as the torsional micromirror. This device has a tremendous number of industrial and consumer market applications including optical switching, light scanning, digital displays, etc. To analyze this device, we develop a comprehensive model of an electrically actuated torsional mirror. Using a Galerkin expansion, we develop a reduced-order model of the mirror and verify it against experimental data. We investigate the accuracy of representing the mirror using a two-degrees-of-freedom lumped-mass model. We conclude that, under normal operating conditions, the statics and dynamics of the mirror can be accurately represented by the simplified lumped-mass system. We utilize the lumped-mass model to study and analyze the nonlinear dynamics of torsional micromirrors subjected to combined DC and resonant AC excitations. The analysis is aimed at enhancing the performance of micromirrors used for scanning applications by providing better insight into the effects of system parameters on the microscanner's optimal design and performance. Examining the characteristics of the mirror response, we found that, for a certain DC voltage range, a two-to-one internal resonance might be activated between the first two modes. Due to this internal resonance, the mirror exhibits complex dynamic behavior. This behavior results in undesirable vibrations that can be detrimental to the scanner performance. Torsional micromirrors are currently being implemented to provide all-optical switching in fiber optic networks. Traditional switching techniques are based on converting the optical signal into electrical signal and back into optical signal before it can be switched into another fiber. This reduces the rate of data transfer substantially. To realize fast all-optical switching, we enhance the transient dynamic characteristics and performance of torsional micromirrors by developing a novel technique for preshaping the voltage commands applied to activate the mirror. This new approach is the first to effectively account for inherent nonlinearities, damping effects, and the energy of the significant higher modes. Using this technique, we are able to realize very fast switching operations with minimal settling time and almost zero overshoot.
- Adaptive Control of a Camera-Projection System using Vision-Based FeedbackLiao, Chwen Kai (Virginia Tech, 2016-04-15)This thesis derives an vision based feedback control strategy for a class of uncertain projector-camera systems that are used to animate two dimensional projected images on complex, three dimensional, articulated target objects. The target object of the robotic system is articulated using an open loop control strategy that generates a desired sequence of target poses that are designed using commercially available geometric modeling software. The ideal or desired image sequences are subsequently rendered in the geometric modeling software using an ideal camera/projector pose and ideal intrinsic parameter camera model. The rendered imagery from the ideal camera and projector pose are subsequently used to define tracking performance for the feedback control of the camera and projector. Uncertainty in actuator models of the camera and projector actuator subsystems in this paper includes contributions due to imprecision in camera pose and in intrinsic camera parameters. A feedback control strategy is derived that employs pixel coordinates of multiple tracked feature points in the target image sequence for pose estimation and tracking control problems. We establish sufficient conditions that guarantee the convergence and asymptotic stability of the pose estimation and tracking control problems for the class of uncertain, nonlinear systems studied in this thesis. Several numerical studies are summarized in the thesis that provide confidence in the derived theoretical results and further suggest robustness of the control strategy for the considered uncertainty class.
- Adaptive Control of Nonaffine Systems with Applications to Flight ControlYoung, Amanda (Virginia Tech, 2006-05-05)Traditional flight control design is based on linearization of the equations of motion around a set of trim points and scheduling gains of linear (optimal) controllers around each of these points to meet performance specifications. For high angle of attack maneuvers and other aggressive flight regimes (required for fighter aircraft for example), the dynamic nonlinearities are dependent not only on the states of the system, but also on the control inputs. Hence, the conventional linearization-based logic cannot be straightforwardly extended to these flight regimes, and non-conventional approaches are required to extend the flight envelope beyond the one achievable by gain-scheduled controllers. Due to the nonlinear-in-control nature of the dynamical system in aggressive flight maneuvers, well-known dynamic inversion methods cannot be applied to determine the explicit form of the control law. Additionally, the aerodynamic uncertainties, typical for such regimes, are poorly modelled, and therefore there is a great need for adaptive control methods to compensate for dynamic instabilities. In this thesis, we present an adaptive control design method for both short-period and lateral/directional control of a fighter aircraft. The approach uses a specialized set of radial basis function approximators and Lyapunov-based adaptive laws to estimate the unknown nonlinearities. The adaptive controller is defined as a solution of fast dynamics, which verifies the assumptions of Tikhonov's theorem from singular perturbations theory. Simulations illustrate the theoretical findings.
- Adaptive Controller Development and Evaluation for a 6DOF Controllable MultirotorFurgiuele, Theresa Chung Wai (Virginia Tech, 2022-10-03)The omnicopter is a small unmanned aerial vehicle capable of executing decoupled translational and rotational motion (six degree of freedom, 6DOF, motion). The development of controllers for various 6DOF controllable multirotors has been much more limited than development for quadrotors, which makes selecting a controller for a 6DOF multirotor difficult. The omnicopter is subject to various uncertainties and disturbances from hardware changes, structural dynamics, and airflow, making adaptive controllers particularly interesting to investigate. The goal of this research is to design and evaluate the performance of various position and attitude controller combinations for the omnicopter, specifically focusing on adaptive controllers. Simulations are first used to compare combinations of three position controllers, PID, model reference adaptive control, augmented model reference adaptive control (aMRAC), and four attitude controllers, PI/feedback linearization (PIFL), augmented model reference adaptive control, backstepping, and adaptive backstepping (aBack). For the simulations, the omnicopter is commanded to point at and track a stationary aim point as it travels along a $C^0$ continuous trajectory and a trajectory that is $C^1$ continuous. The controllers are stressed by random disturbances and the addition of an unaccounted for suspended mass. The augmented model reference adaptive controller for position control paired with the adaptive backstepping controller for attitude control is shown to be the best controller combination for tracking various trajectories while subject to disturbances. Based on the simulation results, the PID/PIFL and aMRAC/aBack controllers are selected to be compared during three different flight tests. The first flight test is on a $C^1$ continuous trajectory while the omnicopter is commanded to point at and track a stationary aim point. The second flight test is a hover with an unmodeled added weight, and the third is a circular trajectory with a broken blade. As with the simulation results, the adaptive controller is shown to yield better performance than the nonadaptive controller for all scenarios, particularly for position tracking. With an added weight or a broken propeller, the adaptive attitude controller struggles to return to level flight, but is capable of maintaining steady flight when the nonadaptive controller tends to fail. Finally, while model reference adaptive controllers are shown to be effective, their nonlinearity can make them difficult to tune and certify via standard certification methods, such as gain and phase margin. A method for using time delay margin estimates, a potential certification metric, to tune the adaptive parameter tuning gain matrix is shown to be useful when applied to an augmented MRAC controller for a quadrotor.
- Adaptive Flight Control in the Presence of Input ConstraintsAjami, Amir Farrokh (Virginia Tech, 2005-12-02)Aerospace systems such as aircraft or missiles are subject to environmental and dynamical uncertainties. These uncertainties can alter the performance and stability of these systems. Adaptive control offers a useful means for controlling systems in the presence of uncertainties. However, very often adaptive controllers require more control effort than the actuator limits allow. In this thesis the original work of others on single input single output adaptive control in the presence of actuator amplitude limits is extended to multi-input systems. The Lyapunov based stability analysis is presented. Finally, the resultant technique is applied to aircraft and missile longitudinal motion. Simulation results show satisfactory tracking of the states of modified reference system.
- Advanced Linear Model Predictive Control For Helicopter Shipboard ManeuversGreer, William Bryce (Virginia Tech, 2019-10-22)This dissertation focuses on implementing and analyzing advanced methods of model predictive control to control helicopters into stable flight near a ship and perform a soft touchdown from that state. A shrinking horizon model predictive control method is presented which can target specific states at specific times and take into account several important factors during landing. This controller is then used in simulation to perform a touchdown maneuver on a ship for a helicopter by targeting a landed state at a specific time. Increasing levels of fidelity are considered in the simulations. Computational power required reduces the closer the helicopter starts to the landing pad. An infinite horizon model predictive controller which allows simultaneous cost on state tracking, control energy, and control rates and allows tracking of an arbitrary equilibrium to infinity is then presented. It is applied in simulation to control a helicopter initially in a random flight condition far from a ship to slowly transition to stable flight near the ship, holding an arbitrary rough position relative to the ship indefinitely at the end. Three different target positions are simulated. This infinite horizon control method can be used to prepare for landing procedures that desire starting with the helicopter in some specific position in close proximity to the landing pad, such as the finite horizon method of landing control described previously which should start with the helicopter close to the ship to reduce computation power required. A method of constructing a landing envelope is then presented and used to construct a landing envelope for the finite horizon landing controller. A pre-existing method of combining linear controllers to account for nonlinearity is then slightly modified and used on implementations of the finite horizon landing controller to make a control that takes into account some of the nonlinearity of the problem. This control is tested in simulation.
- Advances in Aero-Propulsive Modeling for Fixed-Wing and eVTOL Aircraft Using Experimental DataSimmons, Benjamin Mason (Virginia Tech, 2023-07-09)Small unmanned aircraft and electric vertical takeoff and landing (eVTOL) aircraft have recently emerged as vehicles able to perform new missions and stimulate future air transportation methods. This dissertation presents several system identification research advancements for these modern aircraft configurations enabling accurate mathematical model development for flight dynamics simulations based on wind-tunnel and flight-test data. The first part of the dissertation focuses on advances in flight-test system identification methods using small, fixed-wing, remotely-piloted, electric, propeller-driven aircraft. A generalized approach for flight dynamics model development for small fixed-wing aircraft from flight data is described and is followed by presentation of novel flight-test system identification applications, including: aero-propulsive model development for propeller aircraft and nonlinear dynamic model identification without mass properties. The second part of the dissertation builds on established fixed-wing and rotary-wing aircraft system identification methods to develop modeling strategies for transitioning, distributed propulsion, eVTOL aircraft. Novel wind-tunnel experiment designs and aero-propulsive modeling approaches are developed using a subscale, tandem tilt-wing, eVTOL aircraft, leveraging design of experiments and response surface methodology techniques. Additionally, a method applying orthogonal phase-optimized multisine input excitations to aircraft control effectors in wind-tunnel testing is developed to improve test efficiency and identified model utility. Finally, the culmination of this dissertation is synthesis of the techniques described throughout the document to form a flight-test system identification approach for eVTOL aircraft that is demonstrated using a high-fidelity flight dynamics simulation. The research findings highlighted throughout the dissertation constitute substantial progress in efficient empirical aircraft modeling strategies that are applicable to many current and future aeronautical vehicles enabling accurate flight simulation development, which can subsequently be used to foster advancement in many other pertinent technology areas.
- Aerodynamic Analysis of Variable Geometry Raked Wingtips for Mid-Range Transonic Transport AircraftJingeleski, David John (Virginia Tech, 2012-12-21)Previous applications have shown that a wingtip treatment on a commercial airliner will reduce drag and increase fuel efficiency and the most common types of treatment are blended winglets and raked wingtips. With Boeing currently investigating novel designs for its next generation of airliners, a variable geometry raked wingtip novel control effector (VGRWT/NCE) was studied to determine the aerodynamic performance benefits over an untreated wingtip. The Boeing SUGAR design employing a truss-braced wing was selected as the baseline. Vortex lattice method (VLM) and computational fluid dynamics (CFD) software was implemented to analyze the aerodynamic performance of such a configuration applied to a next-generation, transonic, mid-range transport aircraft. Several models were created to simulate various sweep positions for the VGRWT/NCE tip, as well as a baseline model with an untreated wingtip. The majority of investigation was conducted using the VLM software, with CFD used largely as a validation of the VLM analysis. The VGRWT/NCE tip was shown to increase the lift of the wing while also decreasing the drag. As expected, the unswept VGRWT/NCE tip increases the amount of lift available over the untreated wingtip, which will be very beneficial for take-off and landing. Similarly, the swept VGRWT/NCE tip reduced the drag of the wing during cruise compared to the unmodified tip, which will favorably impact the fuel efficiency of the aircraft. Also, the swept VGRWT/NCE tip showed an increase in moment compared to the unmodified wingtip, implying an increase in stability, as well providing an avenue for roll control and gust alleviation for flexible wings. CFD analysis validated VLM as a useful low fidelity tool that yielded quite accurate results. The main results of this study are tabulated "deltas" in the forces and moments on the VGRWT/NCE tip as a function of sweep angle and aileron deflection compared to the baseline wing. A side study of the effects of the joint between the main wing and the movable tip showed that the drag impact can be kept small by careful design.
- Aerodynamic Modeling in Nonlinear Regions, including Stall Spins, for Fixed-Wing Unmanned Aircraft from Experimental Flight DataGresham, James Louis (Virginia Tech, 2022-06-28)With the proliferation of unmanned aircraft designed for national security and commercial purposes, opportunities exist to create high-fidelity aerodynamic models with flight test techniques developed specifically for remotely piloted aircraft. Then, highly maneuverable unmanned aircraft can be employed to their greatest potential in a safe manner using advanced control laws. In this dissertation, novel techniques are used to identify nonlinear, coupled, aerodynamic models for fixed-wing, unmanned aircraft from flight test data alone. Included are quasi-steady and unsteady nominal flight models, aero-propulsive models, and spinning flight models. A novel flight test technique for unmanned aircraft, excitation with remote uncorrelated pilot inputs, is developed for use in nominal and nonlinear flight regimes. Orthogonal phase-optimized multisine excitation signals are also used as inputs while collecting gliding, aero-propulsive, and spinning flight data. A novel vector decomposition of explanatory variables leads to an elegant model structure for stall spin flight data analysis and spin aerodynamic modeling. Results for each model developed show good agreement between model predictions and validation flight data. Two novel applications of aerodynamic modeling are discussed including energy-based nonlinear directional control and a spin flight path control law for use as a flight termination system. Experimental and simulation results from these applications demonstrate the utility of high-fidelity models developed from flight data.
- Aerodynamic Uncertainty Quantification and Estimation of Uncertainty Quantified Performance of Unmanned Aircraft Using Non-Deterministic SimulationsHale II, Lawrence Edmond (Virginia Tech, 2017-01-24)This dissertation addresses model form uncertainty quantification, non-deterministic simulations, and sensitivity analysis of the results of these simulations, with a focus on application to analysis of unmanned aircraft systems. The model form uncertainty quantification utilizes equation error to estimate the error between an identified model and flight test results. The errors are then related to aircraft states, and prediction intervals are calculated. This method for model form uncertainty quantification results in uncertainty bounds that vary with the aircraft state, narrower where consistent information has been collected and wider where data are not available. Non-deterministic simulations can then be performed to provide uncertainty quantified estimates of the system performance. The model form uncertainties could be time varying, so multiple sampling methods were considered. The two methods utilized were a fixed uncertainty level and a rate bounded variation in the uncertainty level. For analysis using fixed uncertainty level, the corner points of the model form uncertainty were sampled, providing reduced computational time. The second model better represents the uncertainty but requires significantly more simulations to sample the uncertainty. The uncertainty quantified performance estimates are compared to estimates based on flight tests to check the accuracy of the results. Sensitivity analysis is performed on the uncertainty quantified performance estimates to provide information on which of the model form uncertainties contribute most to the uncertainty in the performance estimates. The proposed method uses the results from the fixed uncertainty level analysis that utilizes the corner points of the model form uncertainties. The sensitivity of each parameter is estimated based on corner values of all the other uncertain parameters. This results in a range of possible sensitivities for each parameter dependent on the true value of the other parameters.
- Agricultural Crop Monitoring with Computer VisionBurns, James Ian (Virginia Tech, 2014-09-25)Precision agriculture allows farmers to efficiently use their resources with site-specific applications. The current work looks to computer vision for the data collection method necessary for such a smart field, including cameras sensitive to visual (430-650~nm), near infrared (NIR,750-900~nm), shortwave infrared (SWIR,950-1700~nm), and longwave infrared (LWIR,7500-16000~nm) light. Three areas are considered in the study: image segmentation, multispectral image registration, and the feature tracking of a stressed plant. The accuracy of several image segmentation methods are compared. Basic thresholding on pixel intensities and vegetation indices result in accuracies below 75% . Neural networks (NNs) and support vector machines (SVMs) label correctly at 89% and 79%, respectively, when given only visual information, and final accuracies of 97% when the near infrared is added. The point matching methods of Scale Invariant Feature Transform (SIFT) and Edge Orient Histogram (EOH) are compared for accuracy. EOH improves the matching accuracy, but ultimately not enough for the current work. In order to track the image features of a stressed plant, a set of basil and catmint seedlings are grown and placed under drought and hypoxia conditions. Trends are shown in the average pixel values over the lives of the plants and with the vegetation indices, especially that of Marchant and NIR. Lastly, trends are seen in the image textures of the plants through use of textons.
- The Analysis and Prediction of Jet Flow and Jet Noise about Airframe SurfacesSmith, Matthew James (Virginia Tech, 2013-10-15)Aircraft noise mitigation has been an ongoing challenge for the aeronautics research community. In response to this challenge, aircraft concepts have been developed in which the propulsion system is integrated with the airframe to shield the noise from the observer. These concepts exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and accurate modeling of these characteristics are essential to designing future low-noise aircraft. In this thesis, an alternative approach is created for predicting jet mixing noise that utilizes an acoustic analogy and the solution of the steady Reynolds-Averaged Navier-Stokes (RANS) equations using a two equation turbulence model. A tailored Green's function is used in conjunction with the acoustic analogy to account for the propagation effects of mixing noise due to a nearby airframe surface. The tailored Green's function is found numerically using a newly developed ray tracing method. The variation of the aerodynamics, acoustic source, and far- field acoustic intensity are examined as a large flat plate is moved relative to the nozzle exit. Steady RANS solutions are used to study the aerodynamic changes in the field-variables and turbulence statistics. To quantify the propulsion airframe aeroacoustic (PAA) installation effects on the aerodynamic source, a non-dimensional number is formed that can be used as a basic guide to determine if the aerodynamic source is affected by the airframe and if additional noise produced by the airframe surface is present. The aerodynamic and noise prediction models are validated by comparing results with Particle Image Velocimetry (PIV) and far-field acoustic data respectively. The developed jet noise scattering methodology is then used to demonstrate the shielding effects of the Hybrid Wing Body (HWB) aircraft. The validation assessment shows that the acoustic analogy and tailored Green's function provided by the ray tracing method are capable of capturing jet shielding characteristics for multiple configurations and jet exit conditions.
- Analysis of a CubeSat Orbit Using STKFunada, Kenta Patrick (Virginia Tech, 2023-09-05)This thesis presents an analysis of CubeSat orbits for both Low Earth Orbit (LEO) and Sun-Synchronous Orbit (SSO) missions using Systems Tool Kit (STK). The study focuses on analyzing communication, power generation, and radiation exposure while considering various factors. The analysis is based on the 3U CubeSat called UT-ProSat-1, developed by students at Virginia Polytechnic Institute and State University (VT) for an upcoming mission. The orbit size and mass adjustments were made for the LEO mission to enhance communication performance. The influence of solar activity on CubeSat lifetime and access time was examined, highlighting the significance of mass and solar activity. The impact of increasing orbit size on communication time was analyzed, emphasizing the trade-offs between mass, orbit size, and communication performance. The SSO mission prioritized power generation optimization resulted in generating sufficient power for the nominal phase of the mission. It also considered the effects of the South Atlantic Anomaly (SAA) on radiation exposure. Effective risk management of increasing the shielding for the avionics were emphasized which consequently will stabilize the orbit and prolong its lifetime. Additionally, temperature dynamics were investigated, indicating the need for further analysis considering heat dissipation and utilizing a more accurate CubeSat model. The insights gained from this study contribute to the improved the performance of CubeSats and validate the mission results, providing valuable information for successful missions in the future.
- Analysis of Composite Helmet Impact by the Finite Element MethodCallahan, Joseph E. (Virginia Tech, 2011-09-05)We analyze by the finite element method transient deformations of a helmet mounted on a Roma Plastilina #1 clay-filled rigid and stationary headform. The helmet is made of a unidirectional fiber reinforced composite that is modeled as a linear elastic orthotropic material. Hashin's criteria are used to simulate the fiber and the matrix failure. The clay (impactor) is modeled as an elastic-plastic (elastic-viscoplastic), isotropic and homogeneous material. The problem is numerically solved by using the commercial software, ABAQUS, with built-in algorithms to simulate contact between distinct materials (e.g., the clay, the helmet, and the penetrator), and to delete elements whose material has failed. We have verified capabilities of the software for analyzing the penetration problems by solving a few impact problems that have been previously studied by others either experimentally or numerically. The effect of the number of layers in the helmet and the crater formed in the clay due to the impact of the projectile on the helmet has been delineated. It is believed that the crater size in the clay will provide useful information regarding the head injury trauma caused by the impact of a projectile on the helmet.
- Analysis of Sensing Technologies for Collision Avoidance for Small Rotary-Wing Uncrewed Aerial VehiclesGandhi, Manav (Virginia Tech, 2022-06-22)As UASs (Uncrewed Aerial System) are further integrated into operations, the need for on-board environmental perception and sensing is necessitated. An accurate and reliable creation of a 3D map resembling an aircraft's surrounding is crucial for accurate collision avoidance and path planning. Consumer UASs are now being equipped with sensors to fulfill such a requirement – but no system has been proven as capable of being fully relied upon. With many sensing options available, there are several constraints regarding size, weight, and cost that must be considered when developing a sensing solution. Additionally, the robustness of the system must not be diminished when moving to a system that minimizes size, weight, or cost. An analysis of different sensing technologies that small rotary-wing aircraft (below 25kg) can be outfitted with for collision avoidance is performed. Several sensing technologies are initially compared through technology analyses and controlled experiments. The topmost systems were then further integrated onto a small low-cost quadcopter for flight testing and data acquisition. Ultimately, a fusion between stereo vision imagery and radar was deemed the most reliable method for providing environmental data needed for collision avoidance.
- Analytical and Numerical Methods Applied to Nonlinear Vessel Dynamics and Code Verification for Chaotic SystemsWu, Wan (Virginia Tech, 2009-12-01)In this dissertation, the extended Melnikov's method has been applied to several nonlinear ship dynamics models, which are related to the new generation of stability criteria in the International Maritime Organization (IMO). The advantage of this extended Melnikov's method is it overcomes the limitation of small damping that is intrinsic to the implementation of the standard Melnikov's method. The extended Melnikv's method is first applied to two published roll motion models. One is a simple roll model with nonlinear damping and cubic restoring moment. The other is a model with a biased restoring moment. Numerical simulations are investigated for both models. The effectiveness and accuracy of the extended Melnikov's method is demonstrated. Then this method is used to predict more accurately the threshold of global surf-riding for a ship operating in steep following seas. A reference ITTC ship is used here by way of example and the result is compared to that obtained from previously published standard analysis as well as numerical simulations. Because the primary drawback of the extended Melnikov's method is the inability to arrive at a closed form equation, a 'best fit'approximation is given for the extended Melnikov numerically predicted result. The extended Melnikov's method for slowly varying system is applied to a roll-heave-sway coupled ship model. The Melnikov's functions are calculated based on a fishing boat model. And the results are compared with those from standard Melnikov's method. This work is a preliminary research on the application of Melnikov's method to multi-degree-of-freedom ship dynamics. In the last part of the dissertation, the method of manufactured solution is applied to systems with chaotic behavior. The purpose is to identify points with potential numerical discrepancies, and to improve computational efficiency. The numerical discrepancies may be due to the selection of error tolerances, precisions, etc. Two classical chaotic models and two ship capsize models are examined. The current approach overlaps entrainment in chaotic control theory. Here entrainment means two dynamical systems have the same period, phase and amplitude. The convergent region from control theory is used to give a rough guideline on identifying numerical discrepancies for the classical chaotic models. The effectiveness of this method in improving computational efficiency is demonstrated for the ship capsize models.
- Analytical and Numerical Optimal Motion Planning for an Underwater GliderKraus, Robert J. (Virginia Tech, 2010-03-30)The use of autonomous underwater vehicles (AUVs) for oceanic observation and research is becoming more common. Underwater gliders are a specific class of AUV that do not use conventional propulsion. Instead they change their buoyancy and center of mass location to control attitude and trajectory. The vehicles spend most of their time in long, steady glides, so even minor improvements in glide range can be magnified over multiple dives. This dissertation presents a rigid-body dynamic system for a generic vehicle operating in a moving fluid (ocean current or wind). The model is then reduced to apply to underwater gliders. A reduced-order point-mass model is analyzed for optimal gliding in the presence of a current. Different numerical method solutions are compared while attempting to achieve maximum glide range. The result, although approximate, provides good insight into how the vehicles may be operated more effectively. At the end of each dive, the gliders must change their buoyancy and pitch to transition to a climb. Improper scheduling of the buoyancy and pitch change may cause the vehicle to stall and lose directional stability. Optimal control theory is applied to the buoyancy and angle of attack scheduling of a point-mass model. A rigid-body model is analyzed on a singular arc steady glide. An analytical solution for the control required to stay on the arc is calculated. The model is linearized to calculate possible perturbation directions while remaining on the arc. The nonlinear model is then propagated in forward and reverse time with the perturbations and analyzed. Lastly, one of the numerical solutions is analyzed using the singular arc equations for verification. This work received support from the Office of Naval Research under Grant Number N00014-08-1-0012.
- Anthropomimetic Control Synthesis: Adaptive Vehicle Traction ControlKirchner, William (Virginia Tech, 2012-03-22)Human expert drivers have the unique ability to build complex perceptive models using correlated sensory inputs and outputs. In the case of longitudinal vehicle traction, this work will show a direct correlation in longitudinal acceleration to throttle input in a controlled laboratory environment. In fact, human experts have the ability to control a vehicle at or near the performance limits, with respect to vehicle traction, without direct knowledge of the vehicle states; speed, slip or tractive force. Traditional algorithms such as PID, full state feedback, and even sliding mode control have been very successful at handling low level tasks where the physics of the dynamic system are known and stationary. The ability to learn and adapt to changing environmental conditions, as well as develop perceptive models based on stimulus-response data, provides expert human drivers with significant advantages. When it comes to bandwidth, accuracy, and repeatability, automatic control systems have clear advantages over humans; however, most high performance control systems lack many of the unique abilities of a human expert. The underlying motivation for this work is that there are advantages to framing the traction control problem in a manner that more closely resembles how a human expert drives a vehicle. The fundamental idea is the belief that humans have a unique ability to adapt to uncertain environments that are both temporal and spatially varying. In this work, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy. The proposed anthropomimetic traction control algorithm operates on the same correlated input signals that a human expert driver would in order to maximize traction. A gradient ascent approach is at the heart of the proposed anthropomimetic control algorithm, and a real-time implementation is described using linear operator techniques, even though the tire-ground interface is highly non-linear. Performance of the proposed anthropomimetic traction control algorithm is demonstrated using both a longitudinal traction case study and a combined mode traction case study, in which longitudinal and lateral accelerations are maximized simultaneously. The approach presented in this research should be considered as a first step in the development of a truly anthropomimetic solution, where an advanced control algorithm has been designed to be responsive to the same limited input signals that a human expert would rely on, with the objective of maximizing traction. This work establishes the foundation for a general framework for an anthropomimetic control algorithm that is capable of learning and adapting to an uncertain, time varying environment. The algorithms developed in this work are well suited for efficient real time control in ground vehicles in a variety of applications from a driver assist technology to fully autonomous applications.
- Application of Control Allocation Methods to Linear Systems with Four or More ObjectivesBeck, Roger Ezekiel (Virginia Tech, 2002-06-11)Methods for allocating redundant controls for systems with four or more objectives are studied. Previous research into aircraft control allocation has focused on allocating control effectors to provide commands for three rotational degrees of freedom. Redundant control systems have the capability to allocate commands for a larger number of objectives. For aircraft, direct force commands can be applied in addition to moment commands. When controls are limited, constraints must be placed on the objectives which can be achieved. Methods for meeting commands in the entire set of of achievable objectives have been developed. The Bisecting Edge Search Algorithm has been presented as a computationally efficient method for allocating controls in the three objective problem. Linear programming techniques are also frequently presented. This research focuses on an effort to extend the Bisecting Edge Search Algorithm to handle higher numbers of objectives. A recursive algorithm for allocating controls for four or more objectives is proposed. The recursive algorithm is designed to be similar to the three objective allocator and to require computational effort which scales linearly with the controls. The control allocation problem can be formulated as a linear program. Some background on linear programming is presented. Methods based on five formulations are presented. The recursive allocator and linear programming solutions are implemented. Numerical results illustrate how the average and worst case performance scales with the problem size. The recursive allocator is found to scale linearly with the number of controls. As the number of objectives increases, the computational time grows much faster. The linear programming solutions are also seen to scale linearly in the controls for problems with many more controls than objectives. In online applications, computational resources are limited. Even if an allocator performs well in the average case, there still may not be sufficient time to find the worst case solution. If the optimal solution cannot be guaranteed within the available time, some method for early termination should be provided. Estimation of solutions from current information in the allocators is discussed. For the recursive implementation, this estimation is seen to provide nearly optimal performance.