Browsing by Author "Zhu, Yizheng"
Now showing 1 - 20 of 53
Results Per Page
Sort Options
- Acoustic Waveguides and Sensors for High Temperature and Gamma Radiation EnvironmentHe, Jiaji (Virginia Tech, 2021-01-12)Sensing in harsh environments is always in great need. Although many sensors and sensing systems are reported, such as optical fiber sensors and acoustic sensors, they all have drawbacks. In this dissertation, fused quartz and sapphire acoustic waveguides and sensors are developed for high temperature and heavy gamma radiation. The periodic structure, acoustic fiber Bragg grating (AFBG), is the core sensor structure in this dissertation. To better analyze the propagation of acoustic waves, the acoustic coupled more analysis is proposed. It could solve for the reflection spectrum of the AFBG with at most 2.1% error. For the waveguide, the fused quartz "suspended core" waveguide is designed. It achieved strong acoustic energy confinement so surface perturbations no longer affected the wave propagation. Single crystal sapphire fiber features low acoustic loss, and survivability under high temperature. It is also chosen as an acoustic waveguide. AFBGs are fabricated in both waveguides. The fused quartz suspended core AFBG is shown to sense temperature up to 1000 C and to have stable reading at 700 C for 14 days. The sapphire AFBG as a temperature sensor works up to 1500 C and also provides continuous stable reading at 1100 C for 12 days. Both waveguides with AFBGs are then tested under long-term gamma radiation. Despite some fluctuations from radiation-related causes, the readings of both sensors generally remain stable. Given the experimental observations, the fused quartz AFBG waveguide and the sapphire AFBG waveguide are shown to work well in high temperature and gamma radiations.
- Adaptive Mode Control in Few-Mode and Highly Multimode FibersQiu, Tong (Virginia Tech, 2018)Few-mode fibers (FMFs) and multimode fibers (MMFs) can provide much higher data-carrying capacities compared with single-mode fibers. But in order to achieve this goal, one must address the challenge of intermodal coupling and dispersion. Therefore the ability to accurately control the optical signal propagation in FMFs/MMFs can play a pivotal role in FMF/MMF applications. This thesis demonstrates the ability to excite, in FMFs and MMFs, the desired linearly polarized (LP) modes as well as their superpositions through adaptive optics (AO). Specifically, in the case of step-index FMFs, a phase-only spatial light modulator (SLM) is employed to manipulate the light at the fiber input end, driven by the feedback signal provided by the correlation between the charge coupled device (CCD) camera captured images at the fiber output end and the target light intensity profile. Through such an adaptive optical system, any arbitrarily selected LP modes can be excited at the distal end of the four-mode and seventeen-mode fibers, respectively. For a graded-index MMF with a uniform Bragg grating, we use a deformable mirror (DM) to perform the wavefront modulation at the fiber input end, where the feedback is based on the ratio of the grating-reflected signal power to the transmitted signal power. At the Bragg grating position of this highly multimode fiber, any desired principal mode groups can be successfully chosen. These experimental results suggest that adaptive control of optical wavefront in FMFs/MMFs is indeed feasible.
- Analysis of Side-Polished Few-Mode Optical FiberRay, Taylor J. (Virginia Tech, 2019-04-29)Side-polished fiber allows access to the evanescent field propagating in the cladding of a few-mode fiber. This cladding mode is analyzed and experimentally validated to further the design of a novel class of fiber optic devices. To do this, specific modes are excited in the polished fiber using a phase-only spatial light modulator to determine spatial mode distribution. Each mode is excited and compared to the expected field distribution and to confirm that higher order modes can propagate through side-polished fiber. Based on each mode’s distribution, a side-polished fiber can be designed so that perturbations on the polished portion of the fiber effect each mode independently. By carefully analyzing the effects of identical perturbations on each mode, it is determined that each mode can be isolated based on the geometry of the polished fiber and careful alignment of the mode field. This research has the potential to advance the development of novel fiber-based sensors and communications devices utilizing mode-based interferometry and mode multiplexing.
- Band offset determination of mixed As/Sb type-II staggered gap heterostructure for n-channel tunnel field effect transistor applicationZhu, Yizheng; Jain, Nikhil; Mohata, Dheeraj K.; Datta, Suman; Lubyshev, Dmitri; Fastenau, Joel M.; Liu, Amy K.; Hudait, Mantu K. (American Institute of Physics, 2013-01-14)The experimental study of the valence band offset (Delta E-v) of a mixed As/Sb type-II staggered gap GaAs0.35Sb0.65/In0.7Ga0.3As heterostructure used as source/channel junction of n-channel tunnel field effect transistor (TFET) grown by molecular beam epitaxy was investigated by x-ray photoelectron spectroscopy (XPS). Cross-sectional transmission electron micrograph shows high crystalline quality at the source/channel heterointerface. XPS results demonstrate a Delta E-v of 0.39 +/- 0.05 eV at the GaAs0.35Sb0.65/In0.7Ga0.3As heterointerface. The conduction band offset was calculated to be similar to 0.49 eV using the band gap values of source and channel materials and the measured valence band offset. An effective tunneling barrier height of 0.21 eV was extracted, suggesting a great promise for designing a metamorphic mixed As/Sb type-II staggered gap TFET device structure for low-power logic applications. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4775606]
- Bioimpedance spectroscopy of breast cancer cells: A microsystems approachSrinivasaraghavan, Vaishnavi (Virginia Tech, 2015-11-04)Bioimpedance presents a versatile, label-free means of monitoring biological cells and their responses to physical, chemical and biological stimuli. Breast cancer is the second most common type of cancer among women in the United States. Although significant progress has been made in diagnosis and treatment of this disease, there is a need for robust, easy-to-use technologies that can be used for the identification and discrimination of critical subtypes of breast cancer in biopsies obtained from patients. This dissertation makes contributions in three major areas towards addressing the goal. First, we developed miniaturized bioimpedance sensors using MEMS and microfluidics technology that have the requisite traits for clinical use including reliability, ease-of-use, low-cost and disposability. Here, we designed and fabricated two types of bioimpedance sensors. One was based on electric cell-substrate impedance sensing (ECIS) to monitor cell adhesion based events and the other was a microfluidic device with integrated microelectrodes to examine the biophysical properties of single cells. Second, we examined a panel of triple negative breast cancer (TNBC) cell lines and a hormone therapy resistant model of breast cancer in order to improve our understanding of the bioimpedance spectra of breast cancer subtypes. Third, we explored strategies to improve the sensitivity of the microelectrodes to bioimpedance measurements from breast cancer cells. We investigated nano-scale coatings on the surface of the electrode and geometrical variations in a branched electrode design to accomplish this. This work demonstrates the promise of bioimpedance technologies in monitoring diseased cells and their responses to pharmaceutical agents, and motivates further research in customization of this technique for use in personalized medicine.
- Characterization of Internal Formaldehyde Production within The Pandora Spectrometer InstrumentKocur, Nash Brinson (Virginia Tech, 2021-01-19)Formaldehyde (HCHO), plays an important role in atmospheric chemistry and is an indicator of atmospheric oxidation capacity and surface ozone photo chemistry. The Pandora Spectrometer Instruments are deployed within the NASA/ESA sponsored Pandonia Global Network designed for satellite validation of various gases in atmosphere (e.g. ozone, nitrogen dioxide and formaldehyde). In addition, Pandoras are extensively used during national (e.g. DISCOVER-AQ, OWLETS, LISTOS) and international (CINDI, KORUS-AQ) field campaigns organized to better characterise air pollution and its distribution. Recently it was discovered and shown in prior research conducted by (Spinei et al. 2020), that Pandora measurements of atmospheric HCHO are impacted by HCHO produced within the telescope assembly due to temperature dependent off-gassing from the Delrin® plastic components. The purpose of the research covered in this thesis is to provide a methodology to correct total HCHO vertical column densities measured during the past field campaigns. The methodology developed through the course of this thesis is first tested on the Pandora simulated measurements derived from the surface concentration HCHO observations during KORUS-AQ (2016) field campaign. The derived correction using synthetic data shows that the proposed methodology is accurate within 30%. The second part of the thesis characterizes heat transfer processes within the telescope assembly to estimate internal temperature as a function of ambient meteorological conditions. Considering that the Pandora instruments have mostly identical design of their telescope assemblies heat transfer coefficients derived from one pandora are expected to be applicable to all Pandoras. Convective heat transfer coefficients were derived at VT wind tunnel as a function of wind speed and telescope assembly position. Internally generated power was measured for several different instruments and averaged at $2.15 pm 0.38$ W. Total long wave emissivity was calculated at 0.63. Surface absorptivities were estimated from the material properties. Semi-empirically derived model is proposed to estimate the internal temperature based on the heat transfer parameters, ambient temperature, relative humidity, solar flux, wind speed and wind direction. The correlation between the estimated and measured internal temperatures is 0.93 R^2. Finally, the methodology is applied to the actual HCHO data collected during the KORUS-AQ campaign and the results are compared to concurrent in-situ measurements made aboard DC-8 aircraft for eight days in the months of May and June 2016.
- Characterization of Optical Coupling and Back-reflection of Few Mode FibersShipton, Matthew J. (Virginia Tech, 2015-09-01)The continued growth of the communications industry has caused interest in mode-division multiplexing (MDM) techniques to flourish in recent years. These techniques allow individual waveguide modes to be used as distinct channels. However, as with any versatile technique, it should be also useful and beneficial to extend its application to other areas. This work concerns itself with an initial conceptual design of a mode-division multiplexing (MDM) enabled optical sensor network that can use modes to interrogate either specific sensors or sensor subsystems, and specifically with quanitizing and optimizing the injection and detection of the signal of interest. A hypothetical test setup is demonstrated, and the major issue of back reflection burying the intended signal is addressed, analyzed, and improved. Improvements in the signal-to-background contrast ratio (SBCR) of approximately 10dB were achieved depending on fibre type and proximal face. Suggestions for extensions to further improve the SBCR as well as for applications of this system are discussed.
- Defect assistant band alignment transition from staggered to broken gap in mixed As/Sb tunnel field effect transistor heterostructureZhu, Yizheng; Jain, Nikhil; Vijayaraghavan, S.; Mohata, Dheeraj K.; Datta, Suman; Lubyshev, Dmitri; Fastenau, Joel M.; Liu, Amy K.; Monsegue, Niven; Hudait, Mantu K. (American Institute of Physics, 2012-11-01)The compositional dependence of effective tunneling barrier height (E-beff) and defect assisted band alignment transition from staggered gap to broken gap in GaAsSb/InGaAs n-channel tunnel field effect transistor (TFET) structures were demonstrated by x-ray photoelectron spectroscopy (XPS). High-resolution x-ray diffraction measurements revealed that the active layers are internally lattice matched. The evolution of defect properties was evaluated using cross-sectional transmission electron microscopy. The defect density at the source/channel heterointerface was controlled by changing the interface properties during growth. By increasing indium (In) and antimony (Sb) alloy compositions from 65% to 70% in InxGa1-xAs and 60% to 65% in GaAs1-ySby layers, the E-beff was reduced from 0.30 eV to 0.21 eV, respectively, with the low defect density at the source/channel heterointerface. The transfer characteristics of the fabricated TFET device with an E-beff of 0.21eV show 2x improvement in ON-state current compared to the device with E-beff of 0.30 eV. On contrary, the value of E-beff was decreased from 0.21 eV to -0.03 eV due to the presence of high defect density at the GaAs0.35Sb0.65/In0.7Ga0.3As heterointerface. As a result, the band alignment was converted from staggered gap to broken gap, which leads to 4 orders of magnitude increase in OFF-state leakage current. Therefore, a high quality source/channel interface with a properly selected E-beff and well maintained low defect density is necessary to obtain both high ON-state current and low OFF-state leakage in a mixed As/Sb TFET structure for high-performance and lower-power logic applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4764880]
- Design and Evaluation of Off-centered Core Fiber for Gas SensingSu, Xu (Virginia Tech, 2020-07-13)Gas Sensing Has Become a Very Important and Attractive Technique Because of Its Various Applications, Such as in the Increasingly Concerning Case of Environmental Issues, Automobile Emission Detection, Natural Gas Leakage Detection, Etc. It Also Has Significant Applications in Industries, Such as Safety and Health Monitoring in Underground Mines. Among Those Sensing Areas, Fiber-optic Sensors Have Drawn Considerable Attention Because of Its Small Size, Light Weight, High Sensitivity, and Remote Sensing Capability. However, Current Fiber-optic Gas Sensing Techniques Have Several Limitations on Their Potential for Multiplexed or Distributed Sensing Due to Difficulties Such as High Complexity or Large Loss. To Accomplish the Goal for Multiplexed Gas Sensing, an Off-centered Core Fiber Design Is Investigated. The Eccentric Core Can Reduce Attenuation, Keep Mechanical Strength, and Lower Fabrication Cost. To Verify the Feasibility of the Design, Fiber Field Distribution Is First Studied in Simulation, Which Will Be Discussed in Detail in Chapter 2. Then Two Fiber Samples with a Length of 10 Cm and 40 Cm Are Prepared and Placed in a Custom Methane Sensing System for Gas Absorption Testing, Which Is Detailed in Chapter 3. From Etching Analysis, Localized Surface Defects Are Found as the Main Reason for Power Loss. Performance Such as Detection Resolution and Sensitivity Are Investigated. In Chapter 4, Theoretical Evaluations Have Been Conducted for Multiplexed Sensors Performances Using the Off-centered Core Fiber to Study the Impact Fiber Parameters on Sensing System Design. The Conclusion and Summary Are Presented in Chapter 5.
- Development of a Miniature, Fiber-optic Temperature Compensated Pressure SensorAl-Mamun, Mohammad Shah (Virginia Tech, 2014-12-11)Since the invention of Laser (in 1960) and low loss optical fiber (in 1966) [1], extensive research in fiber-optic sensing technology has made it a well-defined and matured field [1]. The measurement of physical parameters (such as temperature and pressure) in extremely harsh environment is one of the most intriguing challenges of this field, and is highly valued in the automobile industry, aerospace research, industrial process monitoring, etc. [2]. Although the semiconductor based sensors can operate at around 500oC, sapphire fiber sensors were demonstrated at even higher temperatures [3]. In this research, a novel sensor structure is proposed that can measure both pressure and temperature simultaneously. This work effort consists of design, fabrication, calibration, and laboratory testing of a novel structured temperature compensated pressure sensor. The aim of this research is to demonstrate an accurate temperature measurement, and pressure measurement using a composite Fabry-Perot interferometer. One interferometer measures the temperature and the other accurately measures pressure after temperature compensation using the temperature data from the first sensor.
- Dynamic Electrical Responses of Biological Cells and Tissue to Low- and High-Frequency Irreversible Electroporation WaveformsWhite, Natalie B. (Virginia Tech, 2021-04-23)Irreversible electroporation (IRE) is a local ablation technique that has been shown to be both safe and effective in the treatment of solid tumors. The treatment typically consists of inserting needle electrodes directly into the treatment zone and applying high-voltage pulses with widths on the order of hundreds of microseconds. These pulses permeabilize tissue leading to loss of homeostasis among the cells in the treatment zone. Predicting these treatments is challenging as the electric field (EF) induced through the electrode configuration is heterogeneous and is affected by several adjustable parameters. Computational treatment planning models aim to provide a visualization of the treatment zone, and they rely on two critical pieces of information: the electric field distribution (EFD) within the tissue, and the lethal EF threshold for the target tissue type. This work primarily aims to quantify tissue properties necessary for computing the EFD for any electrode configuration, for both traditional IRE as well as next-generation high-frequency IRE treatments. Also included is the determination of pancreatic tumor lethal EF threshold using collagen tissue mimics. Additionally, this work builds on previous reports of an optimal resistance reached during IRE by examining the changes in patients' immune cell populations following treatment, and proposing a method of optimizing these populations by monitoring real-time current achieved during IRE.
- Embedded Passivated-electrode Insulator-based DielectrophoresisShake, Tyler Joseph (Virginia Tech, 2014-03-26)Pathogens in drinking water are the cause of over 1.5 million deaths around the world every year, mostly in developing countries. Practical, cheap, and effective tools for detection of these pathogens are critical to advance public health in many areas around the globe. Micro electro-mechanical systems (MEMS) are miniaturized structures that can be used for a variety of purposes, including, but not limited to, small scale sensors. Therefore, MEMS can be used in place of expensive laboratory equipment and offer a cheap and practical tool for pathogen detection. The presented work's research objective is to introduce a new technique called embedded passivated-electrode insulator-based dielectrophoresis (EπDEP) for preconcentration, separation, or enrichment of bioparticles, including living cells. This new method combines traditional electrode-based DEP and insulator-based DEP with the objective of enhancing the electric field strength and capture efficiency within the microfluidic channel while alleviating direct contact between the electrode and the fluid. The EπDEP chip contains embedded electrodes within the microfluidic channel covered by a thin passivation layer of only 4 μm. The channel was designed with two nonaligned vertical columns of insulated microposts (200 μm diameter, 50 μm spacing) located between the electrodes (600 μm wide, 600 μm horizontal spacing) to generate the nonuniform electric field lines to concentrate cells while maintaining steady flow in the channel. The performance of the chip was demonstrated using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial pathogens in aqueous media. Trapping efficiencies of 100% were obtained for both pathogens at an applied AC voltage of 50 V peak-to-peak and flow rates as high as 10 uL/min.
- Ex Vivo Deformations of the Uterosacral LigamentsDonaldson, Kandace E. (Virginia Tech, 2023-02-24)The uterosacral ligaments (USLs) are important anatomical structures that support the uterus and apical vagina within the pelvis. As these structures are over-stretched, become weak, and exhibit laxity, pelvic floor disorders such as pelvic organ prolapse occur. Although several surgical procedures to treat pelvic floor disorders are directed toward the USLs, there is still a lot that is unknown about their function. These surgeries often result in poor outcomes, demonstrating the need for new surgical approaches and biomaterials. The first chapter of this dissertation presents a review of the current knowledge on the mechanical properties of the USLs. The anatomy, microstructure, and clinical significance of the USLs are first reviewed. Then, the results of published experimental studies on the {emph{in vivo}} and {emph{ex vivo}}, uniaxial and biaxial tensile tests are compiled. Based on the existing findings, research gaps are identified and future research directions are discussed. The second chapter proposes the use of planar biaxial testing, digital image correlation (DIC), and optical coherence tomography (OCT) to quantify the deformations of the USLs, both in-plane and out-of-plane. Using virgin swine as an animal model, the USLs were found to deform significantly less in their main direction (MD) of {emph{in vivo}} loading than in the direction perpendicular to it (PD) at increasing equibiaxial stresses. Under constant equibiaxial loading, the USLs deformed over time equally, at comparable rates in both the MD and PD. The thickness of the USLs decreased as the equibiaxial loading increased but, under constant equibiaxial loading, the thickness increased in some specimens and decreased in others. The third chapter presents new experimental methods for testing the {emph{ex vivo}} tensile properties of the uterosacral ligaments (USLs) in rats. USL specimens were carefully dissected to preserve their anatomical attachments, and they were loaded along their main {emph{in vivo}} loading direction (MD) using a custom-built uniaxial tensile testing device. This chapter reports the first mechanical data on the rat USLs in isolation from surrounding organs. It is also the first experimental study to provide measurements of the inhomogeneous deformations of the USLs during loading along their main textit{in vivo} loading direction, revealing that the USLs may behave as auxetic structures. The fourth and final chapter presents preliminary findings on novel imaging applications to characterize the evolving structure of the USLs before, during, and after tensile pulling along the ligaments' main textit{in vivo} axis of loading. Rat USLs were excised using the proposed novel dissection method and pulled uniaxially as was performed in the previous chapter. Before and after mechanical testing, second harmonic generation (SHG) was used to image collagen and muscle within the three anatomical regions of the USLs. During mechanical testing, OCT was used to collect out-of-plane images of the cervical/intermediate regions of the USL specimens, resulting in 3D volume scans of the regions. SHG images showed the USLs to have complex microstructures with significant wavy collagen bundles interwoven with muscle bundles. Preliminary observation of the microstructure during testing revealed interwoven sections of tissue with collagenous fibers that reoriented in all directions illustrating how the USLs may expand laterally during uniaxial loading, causing the auxetic properties documented in the previous chapter. Though more quantitative work remains to be done, the findings presented in this dissertation improve our understanding of how the USLs deform with increasing load, such as what occurs during pregnancy. Together, these studies serve as a springboard for future investigations on the supportive function of the USLs in animal models by offering guidelines on testing methods that capture their complex mechanical behavior.
- Fabrication of miniature fiber-optic temperature sensors(United States Patent and Trademark Office, 2010-07-27)A method of coupling a silica fiber and a sapphire fiber includes providing a silica fiber having a doped core and a cladding layer, with the doped core having a prescribed diameter, providing a sapphire fiber having a diameter less than the doped core, placing an end of the sapphire fiber in close proximity to an end of the silica fiber, applying a heat source to the end of silica fiber and introducing the end of sapphire fiber into the heated doped core of the silica fiber to produce a coupling between the silica and sapphire fibers.
- Femtosecond-Laser-Enabled Fiber-Optic Interferometric DevicesYang, Shuo (Virginia Tech, 2020-11-11)During the past decades, femtosecond laser micro-fabrication has gained growing interests owing to its several unique features including direct and maskless fabrication, flexible choice of materials and geometries, and truly three-dimensional fabrication. Moreover, fiber-optic sensors have demonstrated distinct advantages over traditional electrical sensors such as the immunity to electromagnetic interference, miniature footprint, robust performance, and high sensitivity. Therefore, the marriage between femtosecond laser micro-fabrication and optical fibers have enabled and will continue to offer vast opportunities to create novel structures for sensing applications. This dissertation focuses on design, fabrication and characterization of optical-fiber based interferometric devices for sensing applications. Three novel devices have been proposed and realized, including point-damage-based Fiber Bragg gratings in single-crystal sapphire fibers, all-sapphire fiber-tip Fabry-Pérot cavity, and in-fiber Whispering-Gallery mode resonator
- Fiber-Optic Michelson Interferometer with Faraday Mirrors for Acoustic Sensing using a 3 × 3 Coupler and Symmetric Demodulation SchemeGartland, Peter Lanier (Virginia Tech, 2016-11-02)For the past 40 years, acoustic sensing has been a major avenue for the growth of interfero- metric fiber-optic sensors. Fiber-optic acoustic sensors have found uses in military, commer- cial, and medical applications. An interferometric fiber-optic acoustic sensor is presented utilizing the Michelson interferometer configuration with Faraday mirrors to eliminate po- larization fading. A 3 × 3 coupler is used as the beamsplitting component, and a symmetric demodulation algorithm is applied to recover the phase signal. This sensor has a theoretical resolution of 5.5 pico-strains and room to improve. Such improvements are discussed in the conclusion.
- Fully Distributed Multi-Material Magnetic Sensing Structures for Multiparameter DAS ApplicationsHileman, Zachary Daniel (Virginia Tech, 2022-06-29)This dissertation demonstrates the first of its kind distributed magnetic field sensor based on a fiber optic distributed acoustic sensing (DAS) scheme. Ferromagnetic nickel and Metglas® were dispersed internally within a fiber optic preform and then drawn on an in-house fiber optic draw tower to lengths in the kilometers. Due to the close proximity of the ferromagnetic metals and fiber optic core, the magnetostrictive strain response of the ferromagnetic materials when exposed to a magnetic field would perturbate within the fiber cladding and transfer that strain, internally, to the fiber optic core. Strain resulting from the magnetostrictive effect allows the DAS based sensor to accurately translate strain into readable magnetic field data. Due to the high sensitivity seen in this sensor design, multiparameter sources, acoustic and magnetic fields, were tested and validated and a three dimensional magnetic-field vector sensor was proposed. Numerical analysis of the novel sensor design was first implemented using COMSOL Multiphysics, where inputs such as magnetostrictive element shape, size, distance, and number were first investigated. Upon optimizing system constraints, the sensor design was further modified such that single mode operation was consistent across multiple fiber draws while retaining high strain transfer from the ferromagnetic elements to the fiber optic core. Ferromagnetic material selection was evaluated as a function of the saturation magnetostriction constants and a total of 4 modules were used to fully characterize the complex physics involved in this sensor design. All fabrication and testing were performed in-house using a full scale 3-story fiber draw tower and custom environmental testing stations to imitate naturally occurring events such as magnetic or acoustic point sources. A unique stacking method was used to embed ferromagnetic nickel and Metglas® into a fiber optic preform which when combined with a custom fiber draw process resulted in consistent multi-material fibers drawn to lengths of 1-km. In-house testing facilities included different types of electromagnetic generators, in addition to a soil test bed, and an outdoor test bed which allowed 100 meters of fiber to be tested simultaneously. All tested sensors demonstrated high strain transfer capabilities on the order of 0.01-10 μϵ depending on the materials used, ferromagnetic rod number, and core to metal spacing. Due to the sensitivity of the system the difference between AC and DC was distinct, and directional magnetostriction was studied. Transverse and longitudinal magnetic wave propagation was controlled through a solenoid and rectangular Helmholtz coil, both built in-house. A three-dimensional magnetic field vector sensor was proposed due to the success of the magnetic field sensor, and a design was proposed and initially tested to validate direction as a function of field strength and distance. To summarize, this dissertation explores the first fully distributed magnetic field sensor using DAS based techniques and one of the first multi-material fiber draw processes which can produce consistent single mode fiber up to 1-km. Due to extensive FEA modeling, multiple iterations of the magnetic sensor were fully characterized and an equation describing the relationship between sensor design and strain transfer has been created and validated experimentally. Multi-parameter tests including acoustic and magnetic fields were implemented and an algorithm was developed to separate the mixed signals. Finally, a test was performed to demonstrate the feasibility of sensing magnetic fields directionally. Cumulative results demonstrate a high-quality sensor alternative to current designs which may surpass other magnetic sensors due to innate multi-parameter capabilities, in addition to the inexpensive production cost and extremely long operating lengths.
- Fully Distributed Multi-parameter Sensors Based on Acoustic Fiber Bragg GratingsHu, Di (Virginia Tech, 2017-03-31)A fully distributed multi-parameter acoustic sensing technology is proposed. Current fully distributed sensing techniques are exclusively based on intrinsic scatterings in optical fibers. They demonstrate long sensing span, but their limited applicable parameters (temperature and strain) and costly interrogation systems have prevented their widespread applications. A novel concept of acoustic fiber Bragg grating (AFBG) is conceived with inspiration from optical fiber Bragg grating (FBG). This AFBG structure exploits periodic spatial perturbations on an elongated waveguide to sense variations in the spectrum of an acoustic wave. It achieves ten times higher sensitivity than the traditional time-of-flight measurement system using acoustic pulses. A fast interrogation method is developed to avoid frequency scan, reducing both the system response time (from 3min to <1ms) and total cost. Since acoustic wave propagates with low attenuation along varieties of solid materials (metal, silica, sapphire, etc.), AFBG can be fabricated on a number of waveguides and to sense multiple parameters. Sub-millimeter metal wire and optical fiber based AFBGs have been demonstrated experimentally for effective temperature (25~700 degC) and corrosion sensing. A hollow borosilicate tube is demonstrated for simultaneous temperature (25~200 degC) and pressure (15~75 psi) sensing using two types of acoustic modes. Furthermore, a continuous 0.6 m AFBG is employed for distributed temperature sensing up to 500 degC and to accurately locate the 0.18 m long heated section. Sensing parameters, sensitivity and range of an AFBG can be tuned to fit a specific application by selecting acoustic waveguides with different materials and/or geometries. Therefore, AFBG is a fully distributed sensing technology with tremendous potentiality.
- A General Observational Strategy for Validation of Satellite NO₂ Retrievals using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)Earley, Jeffrey D. (Virginia Tech, 2022-06-21)This thesis analyzes the effectiveness of spatially averaged Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements at regular azimuth angle intervals on an hourly basis to validate satellite based DOAS measurements. Off-Axis MAX-DOAS Measurements taken in Blacksburg, Virginia, between November 2021 and April 2022 with an evenly distributed set of measurements were averaged every hour and compared to Direct Sun measurements, also averaged every hour. Comparisons of the difference in average measurement from both measuring strategies, as well as the distribution standard deviations of hourly measurements suggests that the NO₂ distribution around Blacksburg is homogeneous. In order to test the effectiveness of this sampling strategy,in an inhomogeneous location, the LOTOS-EUROS high resolution (1kmx1km) chemical transport model was used to simulate profiles and vertical column densities of real measurements taken during the TROLIX'19 Field Campaign. The LOTOs-EUROS model was used to simulate vertical profiles as well as Vertical Column Densities based on real MAX-DOAS measurements as well as TROPOMI viewing geometry. While the individual ground measurements were not equal to the TROPOMI profile, the TROPOMI profile is approximately the average of the profiles of measurements made within the hour of TROPOMI overpass.
- Growth, strain relaxation properties and high-kappa dielectric integration of mixed-anion GaAs1-ySby metamorphic materialsZhu, Yizheng; Clavel, M.; Goley, Patrick S.; Hudait, Mantu K. (American Institute of Physics, 2014-10-17)Mixed-anion, GaAs1-ySby metamorphic materials with a wide range of antimony (Sb) compositions extending from 15% to 62%, were grown by solid source molecular beam epitaxy (MBE) on GaAs substrates. The impact of different growth parameters on the Sb composition in GaAs1-ySby materials was systemically investigated. The Sb composition was well-controlled by carefully optimizing the As/Ga ratio, the Sb/Ga ratio, and the substrate temperature during the MBE growth process. High-resolution x-ray diffraction demonstrated a quasi-complete strain relaxation within each composition of GaAs1-ySby. Atomic force microscopy exhibited smooth surface morphologies across the wide range of Sb compositions in the GaAs1-ySby structures. Selected high-kappa dielectric materials, Al2O3, HfO2, and Ta2O5 were deposited using atomic layer deposition on the GaAs0.38Sb0.62 material, and their respective band alignment properties were investigated by x-ray photoelectron spectroscopy (XPS). Detailed XPS analysis revealed a valence band offset of > 2 eV for all three dielectric materials on GaAs0.38Sb0.62, indicating the potential of utilizing these dielectrics on GaAs0.38Sb0.62 for p-type metal-oxide-semiconductor (MOS) applications. Moreover, both Al2O3 and HfO2 showed a conduction band offset of > 2 eV on GaAs0.38Sb0.62, suggesting these two dielectrics can also be used for n-type MOS applications. The well-controlled Sb composition in several GaAs1-ySby material systems and the detailed band alignment analysis of multiple high-kappa dielectric materials on a fixed Sb composition, GaAs0.38Sb0.62, provides a pathway to utilize GaAs1-ySby materials in future microelectronic and optoelectronic applications. (C) 2014 AIP Publishing LLC.
- «
- 1 (current)
- 2
- 3
- »