Scholarly Works, Biochemistry
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Biochemistry by Issue Date
Now showing 1 - 20 of 292
Results Per Page
Sort Options
- Editorial: ‘To err is human, it takes a computer to really foul things up!’*Stewart, Kent K. (Hindawi, 1985-01-01)
- Effect of methanogenic substrates on coenzyme F420-dependent N5,N10-methylene-H4MPT dehydrogenase, N5,N10-methenyl-H4MPT cyclohydrolase and F420-reducing hydrogenase activities in Methanosarcina barkeriMukhopadhyay, Biswarup; Purwantini, Endang; Daniels, Lacy (1993)We measured F420-dependent N5,N10-methylenetetrahydro-methanopterin dehydrogenase, N5, N10-methenyltetrahydro-methanopterin cyclohydrolase, and F420-reducing hydrogenase levels in Methanosarcina barkeri grown on various substrates. Variation in dehydrogenase levels during growth on a specific substrate was usually <3-fold, and much less for cyclohydrolase. H2−CO2-, methanol-, and H2−CO2+ methanol-grown cells had roughly equivalent levels of dehydrogenase and cyclohydrolase. In acetate-grown cells cyclohydrolase level was lowered 2 to 3-fold and dehydrogenase 10 to 80-fold; this was not due to repression by acetate, since, if cultures growing on acetate were supplemented with methanol or H2−CO2, dehydrogenase levels increased 14 to 19-fold, and cyclohydrolase levels by 3 to 4-fold. Compared to H2−CO2- or methanol-grown cells, acetate-or H2−CO2 + methanol-grown cells had lower levels of and less growth phase-dependent variation in hydrogenase activity. Our data are consistent with the following hypotheses: 1. M. barkeri oxidizes methanol via a portion of the CO2-reduction pathway operated in the reverse direction. 2. When steps from CO2 to CH3-S-CoM in the CO2-reduction pathway (in either direction) are not used for methanogenesis, hydrogenase activity is lowered.
- Effects of anti-inflammatory drugs on fever and neutrophilia induced by Clostridium difficile toxin BCardoso, R. A.; Melo Fihlo, A. A.; Melo, M. C. C.; Lyerly, D. M.; Wilkins, Tracy D.; Lima, A. A. M.; Ribeiro, R. A.; Souza, G. E. P. (Hindawi Publishing Corporation, 1996-06)This study investigated the ability of Clostridium difficile toxin B, isolated from the VPI 10463 strain, to induce fever and neutrophilia in rats. Intravenous injection of toxin B (0.005-0.5 mu g/kg) evoked a dose-dependent increase in body temperature. The febrile response to 0.5 mu g/kg of the toxin started in 2.5 h, peaked at 5 h, and subsided fully within 24 h. Toxin B also induced a dose-dependent neutrophilia. Pretreatment with indomethacin (2 mg/kg, i.p.) did not affect the neutrophilia induced by toxin B, but significantly reduced the febrile response measured 4 to 8 h after toxin B injection. Dexamethasone (0.5 mg/kg) also markedly diminished the febrile response induced by toxin B. These results show that Clostridium difficile toxin B induced a febrile response susceptible to inhibition by dexamethasone and indomethacin. Furthermore, they suggest that prostaglandins are not involved in the neutrophilia caused by this toxin.
- Molecular dynamics simulations of the d(CCAACGTTGG)(2) decamer: Influence of the crystal environmentBevan, David R.; Li, L. P.; Pedersen, L. G.; Darden, T. A. (CELL PRESS, 2000-02)Molecular dynamics (MD) simulations of the DNA duplex d(CCAACGTTGG)(2) were used to study the relationship between DNA sequence and structure. Two crystal simulations were carried out; one consisted of one unit cell containing two duplexes, and the other of two unit cells containing four duplexes. Two solution simulations were also carried out, one starting from canonical B-DNA and the other starting from the crystal structure, For many helicoidal parameters, the results from the crystal and solution simulations were essentially identical. However, for other parameters, in particular, alpha, gamma, delta, (epsilon - zeta), phase, and helical twist, differences between crystal and solution simulations were apparent. Notably, during crystal simulations, values of helical twist remained comparable to those in the crystal structure, to include the sequence-dependent differences among base steps, in which values ranged from 20 degrees to 50 degrees per base step, However, in the solution simulations, not only did the average values of helical twist decrease to similar to 30 degrees per base step, but every base step was similar to 30 degrees, suggesting that the sequence-dependent information may be lost. This study reveals that MD simulations of the crystal environment complement solution simulations in validating the applicability of MD to the analysis of DNA structure.
- Label-free DNA sequence detection using oligonucleotide functionalized optical fiberWang, X. W.; Cooper, K. L.; Wang, Anbo; Xu, J. C.; Wang, Z. A.; Zhang, Y.; Tu, Zhijian Jake (AIP Publishing, 2006-10-01)The authors present a label-free method for direct detection of deoxyribonucleic acid (DNA) sequences. The capture DNA is immobilized onto the surface of a silica optical fiber tip by means of the layer-by-layer electrostatic self-assembly technique. Hybridization of target DNA with complementary capture DNA increases the optical thickness of the fiber tip. This phenomenon can be detected by demodulation of the spectrum of a Fabry-Perot cavity fabricated in the optical fiber. Experimental results demonstrate sequence specificity and sensitivity to nanogram quantities of target DNA sequences with short (similar to 5 min) hybridization time. (c) 2006 American Institute of Physics.
- The Juan non-LTR retrotransposon in mosquitoes: genomic impact, vertical transmission and indications of recent and wide-spread activityBiedler, James K.; Tu, Zhijian Jake (2007-07-09)Background In contrast to DNA-mediated transposable elements (TEs), retrotransposons, particularly non-long terminal repeat retrotransposons (non-LTRs), are generally considered to have a much lower propensity towards horizontal transfer. Detailed studies on site-specific non-LTR families have demonstrated strict vertical transmission. More studies are needed with non-site-specific non-LTR families to determine whether strict vertical transmission is a phenomenon related to site specificity or a more general characteristic of all non-LTRs. Juan is a Jockey clade non-LTR retrotransposon first discovered in mosquitoes that is widely distributed in the mosquito family Culicidae. Being a non-site specific non-LTR, Juan offers an opportunity to further investigate the hypothesis that non-LTRs are genomic elements that are primarily vertically transmitted. Results Systematic analysis of the ~1.3 Gbp Aedes aegypti (Ae. aegypti) genome sequence suggests that Juan-A is the only Juan-type non-LTR in Aedes aegypti. Juan-A is highly reiterated and comprises approximately 3% of the genome. Using minimum cutoffs of 90% length and 70% nucleotide (nt) identity, 663 copies were found by BLAST using the published Juan-A sequence as the query. All 663 copies are at least 95% identical to Juan-A, while 378 of these copies are 99% identical to Juan-A, indicating that the Juan-A family has been transposing recently in evolutionary history. Using the 0.34 Kb 5' UTR as the query, over 2000 copies were identified that may contain internal promoters, leading to questions on the genomic impact of Juan-A. Juan sequences were obtained by PCR, library screening, and database searches for 18 mosquito species of six genera including Aedes, Ochlerotatus, Psorophora, Culex, Deinocerites, and Wyeomyia. Comparison of host and Juan phylogenies shows overall congruence with few exceptions. Conclusion Juan-A is a major genomic component in Ae. aegypti and it has been retrotransposing recently in evolutionary history. There are also indications that Juan has been recently active in a wide range of mosquito species. Furthermore, our research demonstrates that a Jockey clade non-LTR without target site-specificity has been sustained by vertical transmission in the mosquito family. These results strengthen the argument that non-LTRs tend to be genomic elements capable of persistence by vertical descent over a long evolutionary time.
- CMGSDB: integrating heterogeneous Caenorhabditis elegans data sources using compositional data miningPati, Amrita; Jin, Ying; Klage, Karsten; Helm, Richard F.; Heath, Lenwood S.; Ramakrishnan, Naren (Oxford University Press, 2008-01-01)CMGSDB (Database for Computational Modeling of Gene Silencing) is an integration of heterogeneous data sources about Caenorhabditis elegans with capabilities for compositional data mining (CDM) across diverse domains. Besides gene, protein and functional annotations, CMGSDB currently unifies information about 531 RNAi phenotypes obtained from heterogeneous databases using a hierarchical scheme. A phenotype browser at the CMGSDB website serves this hierarchy and relates phenotypes to other biological entities. The application of CDM to CMGSDB produces ‘chains’ of relationships in the data by finding two-way connections between sets of biological entities. Chains can, for example, relate the knock down of a set of genes during an RNAi experiment to the disruption of a pathway or specific gene expression through another set of genes not directly related to the former set. The web interface for CMGSDB is available at https://bioinformatics.cs.vt.edu/cmgs/CMGSDB/, and serves individual biological entity information as well as details of all chains computed by CDM.
- Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensiMead, Edward A.; Tu, Zhijian Jake (2008-05-23)Background microRNAs (miRNAs) are non-coding RNAs that are now recognized as a major class of gene-regulating molecules widely distributed in metozoans and plants. miRNAs have been found to play important roles in apoptosis, cancer, development, differentiation, inflammation, longevity, and viral infection. There are a few reports describing miRNAs in the African malaria mosquito, Anopheles gambiae, on the basis of similarity to known miRNAs from other species. An. stephensi is the most important malaria vector in Asia and it is becoming a model Anopheline species for physiological and genetics studies. Results We report the cloning and characterization of 27 distinct miRNAs from 17-day old An. stephensi female mosquitoes. Seventeen of the 27 miRNAs matched previously predicted An. gambiae miRNAs, offering the first experimental verification of miRNAs from mosquito species. Ten of the 27 are miRNAs previously unknown to mosquitoes, four of which did not match any known miRNAs in any organism. Twenty-five of the 27 Anopheles miRNAs had conserved sequences in the genome of a divergent relative, the yellow fever mosquito Aedes aegypti. Two clusters of miRNAs were found within introns of orthologous genes in An. gambiae, Ae. aegypti, and Drosophila melanogaster. Mature miRNAs were detected in An. stephensi for all of the nine selected miRNAs, including the four novel miRNAs (miR-x1- miR-x4), either by northern blot or by Ribonuclease Protection Assay. Expression profile analysis of eight of these miRNAs revealed distinct expression patterns from early embryo to adult stages in An. stephensi. In both An. stephensi and Ae. aegypti, the expression of miR-x2 was restricted to adult females and predominantly in the ovaries. A significant reduction of miR-x2 level was observed 72 hrs after a blood meal. Thus miR-x2 is likely involved in female reproduction and its function may be conserved among divergent mosquitoes. A mosquito homolog of miR-14, a regulator of longevity and apoptosis in D. melanogaster, represented 25% of all sequenced miRNA clones from 17-day old An. stephensi female mosquitoes. An. stephensi miR-14 displayed a relatively strong signal from late embryonic to adult stages. miR-14 expression is consistent during the adult lifespan regardless of age, sex, and blood feeding status. Thus miR-14 is likely important across all mosquito life stages. Conclusion This study provides experimental evidence for 23 conserved and four new microRNAs in An. stephensi mosquitoes. Comparisons between miRNA gene clusters in Anopheles and Aedes mosquitoes, and in D. melanogaster suggest the loss or significant change of two miRNA genes in Ae. aegypti. Expression profile analysis of eight miRNAs, including the four new miRNAs, revealed distinct patterns from early embryo to adult stages in An. stephensi. Further analysis showed that miR-x2 is likely involved in female reproduction and its function may be conserved among divergent mosquitoes. Consistent expression of miR-14 suggests that it is likely important across all mosquito life stages from embryos to aged adults. Understanding the functions of mosquito miRNAs will undoubtedly contribute to a better understanding of mosquito biology including longevity, reproduction, and mosquito-pathogen interactions, which are important to disease transmission.
- Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunitSlade, Daniel J.; Lovelace, Leslie L.; Chruszcz, Maksymilian; Minor, Wladek; Lebioda, Lukasz; Sodetz, James M. (Academic Press – Elsevier, 2008-05-29)Human C8 is one of five complement components (C5b, C6, C7, C8 and C9) that assemble on bacterial membranes to form a pore-like structure referred to as the "membrane attack complex" (MAC). C8 contains three genetically distinct subunits (C8α, C8β, Cγ.) arranged as a disulfide-linked C8α-γ dimer that is noncovalently associated with C8β. C6, C7 C8α, C8β and C9 are homologous. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. The C8γ subunit is unrelated and belongs to the lipocalin family of proteins that display a β-barrel fold and generally bind small, hydrophobic ligands. Several hundred proteins with MACPF domains have been identified based on sequence similarity; however, the structure and function of most are unknown. Crystal structures of the secreted bacterial protein Plu-MACPF and the human C8α MACPF domain were recently reported and both display a fold similar to the bacterial pore-forming cholesterol-dependent cytolysins (CDC). In the present study, we determined the crystal structure of the human C8α MACPF domain disulfide-linked to C8γ (αMACPF-γ) at 2.15 Å resolution. The αMACPF portion has the predicted CDC-like fold and shows two regions of interaction with C8γ. One is in a previously characterized 19-residue insertion (indel) in C8α and fills the entrance to the putative C8γ ligand binding site. The second is a hydrophobic pocket that makes contact with residues on the side of the C8γ β-barrel. The latter interaction induces conformational changes in αMACPF that are likely important for C8 function. Also observed is structural conservation of the MACPF signature motif Y/W-G-T/S-H-F/Y-X6-G-G in αMACPF and Plu-MACPF, and conservation of several key glycine residues known to be important for refolding and pore formation by CDCs.
- Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular formsSantolamazza, Federica; Mancini, Emiliano; Simard, Frédéric; Qi, Yumin; Tu, Zhijian Jake; della Torre, Alessandra (Biomed Central, 2008-08-25)Background SINEs (Short INterspersed Elements) are homoplasy-free and co-dominant genetic markers which are considered to represent useful tools for population genetic studies, and could help clarifying the speciation processes ongoing within the major malaria vector in Africa, Anopheles gambiae s.s. Here, we report the results of the analysis of the insertion polymorphism of a nearly 200 bp-long SINE (SINE200) within genome areas of high differentiation (i.e. "speciation islands") of M and S A. gambiae molecular forms. Methods A SINE-PCR approach was carried out on thirteen SINE200 insertions in M and S females collected along the whole range of distribution of A. gambiae s.s. in sub-Saharan Africa. Ten specimens each for Anopheles arabiensis, Anopheles melas, Anopheles quadriannulatus A and 15 M/S hybrids from laboratory crosses were also analysed. Results Eight loci were successfully amplified and were found to be specific for A. gambiae s.s.: 5 on 2L chromosome and one on X chromosome resulted monomorphic, while two loci positioned respectively on 2R (i.e. S200 2R12D) and X (i.e. S200 X6.1) chromosomes were found to be polymorphic. S200 2R12D was homozygote for the insertion in most S-form samples, while intermediate levels of polymorphism were shown in M-form, resulting in an overall high degree of genetic differentiation between molecular forms (Fst = 0.46 p < 0.001) and within M-form (Fst = 0.46 p < 0.001). The insertion of S200 X6.1 was found to be fixed in all M- and absent in all S-specimens. This led to develop a novel easy-to-use PCR approach to straightforwardly identify A. gambiae molecular forms. This novel approach allows to overcome the constraints associated with markers on the rDNA region commonly used for M and S identification. In fact, it is based on a single copy and irreversible SINE200 insertion and, thus, is not subjected to peculiar evolutionary patterns affecting rDNA markers, e.g. incomplete homogenization of the arrays through concerted evolution and/or mixtures of M and S IGS-sequences among the arrays of single chromatids. Conclusion The approach utilized allowed to develop new easy-to-use co-dominant markers for the analysis of genetic differentiation between M and S-forms and opens new perspectives in the study of the speciation process ongoing within A. gambiae.
- RNA Interference of Trypanosoma brucei Cathepsin B and L Affects Disease Progression in a Mouse ModelAbdulla, Maha-Hamadien; O'Brien, Theresa C.; Mackey, Zachary B.; Sajid, Mohamed; Grab, Dennis J.; McKerrow, James H. (PLOS, 2008-09-01)We investigated the roles played by the cysteine proteases cathepsin B and cathepsin L (brucipain) in the pathogenesis of Trypansoma brucei brucei in both an in vivo mouse model and an in vitro model of the blood–brain barrier. Doxycycline induction of RNAi targeting cathepsin B led to parasite clearance from the bloodstream and prevent a lethal infection in the mice. In contrast, all mice infected with T. brucei containing the uninduced Trypanosoma brucei cathepsin B (TbCatB) RNA construct died by day 13. Induction of RNAi against brucipain did not cure mice from infection; however, 50% of these mice survived 60 days longer than uninduced controls. The ability of T. b. brucei to cross an in vitro model of the human blood–brain barrier was also reduced by brucipain RNAi induction. Taken together, the data suggest that while TbCatB is the more likely target for the development of new chemotherapy, a possible role for brucipain is in facilitating parasite entry into the brain.
- Odorant receptor c-terminal motifs in divergent insect speciesMiller, Raymond; Tu, Zhijian Jake (Entomological Society of America, 2008-09-22)Insect odorant receptors are a large family of seven transmembrane proteins believed to be G-protein coupled receptors. The peptide sequences of two odorant receptors within a given species may share as little as 17% identity, and there is limited similarity between receptors of divergent species. One exception is DmOr83b, which is found in Drosophila melanogaster and is highly conserved in at least ten other insect species. DmOr83b is broadly expressed in most of the olfactory sensory neurons of D. melanogaster at most developmental stages, while other odorant receptors tend to have more restricted and specific expression patterns. DmOr83b is critical for D. melanogaster olfaction, and it is involved in properly localizing other odorant receptors possibly by forming heterodimers with these receptors. The C-terminal region has been implicated as sites for such heterodimer formation. Multiple em for motif elicitation (MEME), a hidden markov model based program, was used to uncover three conserved motifs in the C-termini of a vast majority of the odorant receptor peptides from Anopheles gambiae, D. melanogaster, and Apis mellifera. These motifs are also found in DmOr83b and its orthologs and the order of these motifs is conserved as well. The conservation of these motifs among divergent odorant receptors in divergent species suggests functional importance. We propose that these motifs are involved in receptor-receptor protein interactions, contributing to the heterodimer formation between DmOr83b (or its orthologs) and other odorant receptors.
- Trypanosoma cruzi CYP51 Inhibitor Derived from a Mycobacterium tuberculosis Screen HitChen, Chiung-Kuang; Doyle, Patricia S.; Yermalitskaya, Ludmila V.; Mackey, Zachary B.; Ang, Kenny K. H.; McKerrow, James H.; Podust, L.arissa M. (PLOS, 2009-02-01)Background: The two front-line drugs for chronic Trypanosoma cruzi infections are limited by adverse side-effects and declining efficacy. One potential new target for Chagas’ disease chemotherapy is sterol 14a-demethylase (CYP51), a cytochrome P450 enzyme involved in biosynthesis of membrane sterols. Methodology/Principal Finding: In a screening effort targeting Mycobacterium tuberculosis CYP51 (CYP51Mt), we previously identified the N-[4-pyridyl]-formamide moiety as a building block capable of delivering a variety of chemotypes into the CYP51 active site. In that work, the binding modes of several second generation compounds carrying this scaffold were determined by high-resolution co-crystal structures with CYP51Mt. Subsequent assays against the CYP51 orthologue in T. cruzi, CYP51Tc, demonstrated that two of the compounds tested in the earlier effort bound tightly to this enzyme. Both were tested in vitro for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. One of the compounds had potent, selective anti–T. cruzi activity in infected mouse macrophages. Cure of treated host cells was confirmed by prolonged incubation in the absence of the inhibiting compound. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability (phenylalanine versus isoleucine) of a single residue at a critical position in the active site. Conclusions/Significance: CYP51Mt-based crystal structure analysis revealed that the functional groups of the two tightly bound compounds are likely to occupy different spaces in the CYP51 active site, suggesting the possibility of combining the beneficial features of both inhibitors in a third generation of compounds to achieve more potent and selective inhibition of CYP51Tc.
- The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic CrenarchaeotaAnderson, Iain J.; Dharmarajan, Lakshmi; Rodriguez, Jason; Hooper, Sean; Porat, Iris; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Sun, Hui; Land, Miriam; Lapidus, Alla; Lucas, Susan; Barry, Kerrie W.; Huber, Harald; Zhulin, Igor B.; Whitman, William B.; Mukhopadhyay, Biswarup; Woese, Carl; Bristow, James; Kyrpides, Nikos C. (2009-04-02)Background Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. Results The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced - Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. Conclusion The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.
- Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAsLi, Song; Mead, Edward A.; Liang, Shaohui; Tu, Zhijian Jake (2009-12-04)Background MicroRNAs (miRNAs) are a novel class of gene regulators whose biogenesis involves hairpin structures called precursor miRNAs, or pre-miRNAs. A pre-miRNA is processed to make a miRNA:miRNA* duplex, which is then separated to generate a mature miRNA and a miRNA*. The mature miRNAs play key regulatory roles during embryonic development as well as other cellular processes. They are also implicated in control of viral infection as well as innate immunity. Direct experimental evidence for mosquito miRNAs has been recently reported in anopheline mosquitoes based on small-scale cloning efforts. Results We obtained approximately 130, 000 small RNA sequences from the yellow fever mosquito, Aedes aegypti, by 454 sequencing of samples that were isolated from mixed-age embryos and midguts from sugar-fed and blood-fed females, respectively. We also performed bioinformatics analysis on the Ae. aegypti genome assembly to identify evidence for additional miRNAs. The combination of these approaches uncovered 98 different pre-miRNAs in Ae. aegypti which could produce 86 distinct miRNAs. Thirteen miRNAs, including eight novel miRNAs identified in this study, are currently only found in mosquitoes. We also identified five potential revisions to previously annotated miRNAs at the miRNA termini, two cases of highly abundant miRNA* sequences, 14 miRNA clusters, and 17 cases where more than one pre-miRNA hairpin produces the same or highly similar mature miRNAs. A number of miRNAs showed higher levels in midgut from blood-fed female than that from sugar-fed female, which was confirmed by northern blots on two of these miRNAs. Northern blots also revealed several miRNAs that showed stage-specific expression. Detailed expression analysis of eight of the 13 mosquito-specific miRNAs in four divergent mosquito genera identified cases of clearly conserved expression patterns and obvious differences. Four of the 13 miRNAs are specific to certain lineage(s) within mosquitoes. Conclusion This study provides the first systematic analysis of miRNAs in Ae. aegypti and offers a substantially expanded list of miRNAs for all mosquitoes. New insights were gained on the evolution of conserved and lineage-specific miRNAs in mosquitoes. The expression profiles of a few miRNAs suggest stage-specific functions and functions related to embryonic development or blood feeding. A better understanding of the functions of these miRNAs will offer new insights in mosquito biology and may lead to novel approaches to combat mosquito-borne infectious diseases.
- BpaB, a novel protein encoded by the Lyme disease spirochete’s cp32 prophages, binds to erp Operator 2 DNABurns, Logan H.; Adams, Claire A.; Riley, Sean P.; Jutras, Brandon L.; Bowman, Amy; Chenail, Alicia M.; Cooley, Anne E.; Haselhorst, Laura A.; Moore, Alisha M.; Babb, Kelly; Fried, Michael G.; Stevenson, Brian (Oxford University Press, 2010)Borrelia burgdorferi produces Erp outer surface proteins throughout mammalian infection, but represses their synthesis during colonization of vector ticks. A DNA region 50 of the start of erp transcription, Operator 2, was previously shown to be essential for regulation of expression. We now report identification and characterization of a novel erp Operator 2-binding protein, which we named BpaB. erp operons are located on episomal cp32 prophages, and a single bacterium may contain as many as 10 different cp32s. Each cp32 family member encodes a unique BpaB protein, yet the three tested cp32-encoded BpaB alleles all bound to the same DNA sequence. A 20-bp region of erp Operator 2 was determined to be essential for BpaB binding, and initial protein binding to that site was required for binding of additional BpaB molecules. A 36-residue region near the BpaB carboxy terminus was found to be essential for high-affinity DNA-binding. BpaB competed for binding to erp Operator 2 with a second B. burgdorferi DNAbinding protein, EbfC. Thus, cellular levels of free BpaB and EbfC could potentially control erp transcription levels.
- Virtual Screening as a Technique for PPAR Modulator DiscoveryLewis, Stephanie N.; Bassaganya-Riera, Josep; Bevan, David R. (Hindawi, 2010-01-01)Virtual screening (VS) is a discovery technique to identify novel compounds with therapeutic and preventive efficacy against disease. Our current focus is on the in silico screening and discovery of novel peroxisome proliferator-activated receptor-gamma (PPARγ) agonists. It is well recognized that PPARγagonists have therapeutic applications as insulin sensitizers in type 2 diabetes or as anti-inflammatories. VS is a cost- and time-effective means for identifying small molecules that have therapeutic potential. Our long-term goal is to devise computational approaches for testing the PPARγ-binding activity of extensive naturally occurring compound libraries prior to testing agonist activity using ligand-binding and reporter assays. This review summarizes the high potential for obtaining further fundamental understanding of PPARγ biology and development of novel therapies for treating chronic inflammatory diseases through evolution and implementation of computational screening processes for immunotherapeutics in conjunction with experimental methods for calibration and validation of results.
- Characterization of ESBL (SHV-12) producing clinical isolate of Enterobacter aerogenes from a tertiary care hospital in NigeriaKasap, Murat; Fashae, Kayode; Torol, Sinem; Kolayli, Fetiye; Budak, Fatma; Vahaboglu, Haluk (2010-01-12)Background We studied the beta-lactamases of an E. aerogenes isolate recovered from the blood of a two-year-old patient. The isolate demonstrated a disk-diffusion phenotype typical for an AmpC-ESBL co-producer. Methods Microbiology studies were performed according to standard protocols. The resistance gene was identified by transconjugation and cloning experiments. Results By transconjugation only a narrow spectrum beta-lactamase (TEM-1) encoded on a small plasmid was transmitted. The ESBL was cloned and expressed in an E. coli host. Sequence analysis of the recombinant plasmid revealed blaSHV-12 associated to the insertion sequence, IS26. Conclusion This is the first study demonstrated the occurrence of SHV-12 in Nigeria.
- Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine DecarboxylaseHan, Qian; Ding, Haizhen; Robinson, Howard; Christensen, Bruce M.; Li, Jianyong (PLOS, 2010-01-21)Background 3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. Principal Findings In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. Conclusions The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.
- The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwideCarlsen, Monica H.; Halvorsen, Bente L.; Holte, Kari; Bøhn, Siv K.; Dragland, Steinar; Sampson, Laura; Willey, Carol; Senoo, Haruki; Umezono, Yuko; Sanada, Chiho; Barikmo, Ingrid; Berhe, Nega; Willett, Walter C.; Phillips, Katherine M.; Jacobs, David R. Jr.; Blomhoff, Rune (Biomed Central, 2010-01-22)Background A plant-based diet protects against chronic oxidative stress-related diseases. Dietary plants contain variable chemical families and amounts of antioxidants. It has been hypothesized that plant antioxidants may contribute to the beneficial health effects of dietary plants. Our objective was to develop a comprehensive food database consisting of the total antioxidant content of typical foods as well as other dietary items such as traditional medicine plants, herbs and spices and dietary supplements. This database is intended for use in a wide range of nutritional research, from in vitro and cell and animal studies, to clinical trials and nutritional epidemiological studies. Methods We procured samples from countries worldwide and assayed the samples for their total antioxidant content using a modified version of the FRAP assay. Results and sample information (such as country of origin, product and/or brand name) were registered for each individual food sample and constitute the Antioxidant Food Table. Results The results demonstrate that there are several thousand-fold differences in antioxidant content of foods. Spices, herbs and supplements include the most antioxidant rich products in our study, some exceptionally high. Berries, fruits, nuts, chocolate, vegetables and products thereof constitute common foods and beverages with high antioxidant values. Conclusions This database is to our best knowledge the most comprehensive Antioxidant Food Database published and it shows that plant-based foods introduce significantly more antioxidants into human diet than non-plant foods. Because of the large variations observed between otherwise comparable food samples the study emphasizes the importance of using a comprehensive database combined with a detailed system for food registration in clinical and epidemiological studies. The present antioxidant database is therefore an essential research tool to further elucidate the potential health effects of phytochemical antioxidants in diet.