Scholarly Works, Center for Energy Harvesting Materials and Systems (CEHMS)
Permanent URI for this collection
Browse
Browsing Scholarly Works, Center for Energy Harvesting Materials and Systems (CEHMS) by Issue Date
Now showing 1 - 20 of 65
Results Per Page
Sort Options
- Large piezoresistivity phenomenon in SiCN-(La,Sr)MnO3 compositesKarmarkar, Makarand; Singh, Gurpreet; Shah, Sandeep; Mahajan, Roop L.; Priya, Shashank (AIP Publishing, 2009-02-01)We present the results on SiCN-(La,Sr)MnO3 (LSMO) composites correlating the observed large piezoresistance behavior with the microstructural features and defect chemistry. Scanning electron microscopy characterization revealed the presence of self-assembled periodic microvalleys in the microstructure with width of 1-5 mu m and depth of 600-1000 nm. The microvalleys act as stress concentration points providing change in volume with applied stress. High resolution transmission electron microscopy measurements conducted on composites showed that LSMO grains consist of SiCN phase but no inclusions were observed.
- A generalized rule for large piezoelectric response in perovskite oxide ceramics and its application for design of lead-free compositionsAhn, Cheol-Woo; Maurya, Deepam; Park, Chee-Sung; Nahm, Sahn; Priya, Shashank (American Institute of Physics, 2009-06-01)We present a general rule for the perovskite oxide ceramics: "A large piezoelectric constant in ABO(3) perovskite ceramics can be obtained by tuning the weight ratio of A and B sites, WA/WB or WB/WA, to 3. Piezoelectric constant decreases significantly when WA/WB or WB/WA is in the range of 0.5-2.0, termed as forbidden zone." A comparative analysis was conducted for broad range of materials demonstrating the applicability of proposed rule. Further based on this rule optimized compositions in BaTiO3 and alkali niobate based systems were developed. Polycrystalline ceramics in modified BaTiO3 system were found to exhibit longitudinal piezoelectric coefficient (d(33)) of 330 pC/N, while alkali niobate ceramics showed d(33) of 294 pC/N. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3142442]
- Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor NodesPriya, Shashank; Ryu, Jungho; Park, Chee-Sung; Oliver, Josiah; Choi, Jong-Jin; Park, Dong-Soo (MDPI, 2009-08-17)In this manuscript, we review the progress made in the synthesis of thick film-based piezoelectric and magnetoelectric structures for harvesting energy from mechanical vibrations and magnetic field. Piezoelectric compositions in the system Pb(Zr,Ti)O₃– Pb(Zn₁/₃Nb₂/₃)O₃ (PZNT) have shown promise for providing enhanced efficiency due to higher energy density and thus form the base of transducers designed for capturing the mechanical energy. Laminate structures of PZNT with magnetostrictive ferrite materials provide large magnitudes of magnetoelectric coupling and are being targeted to capture the stray magnetic field energy. We analyze the models used to predict the performance of the energy harvesters and present a full system description.
- Metal-ceramic laminate composite magnetoelectric gradiometerBedekar, Vishwas; Bichurin, Mirza I.; Ivanov, Sergey N.; Pukinskiy, Yuri J.; Priya, Shashank (AIP Publishing, 2010-03-01)Gradiometer resembles in functionality a magnetic field sensor where it measures the magnetic field gradient and its sensitivity is determined by the ability to quantify differential voltage change with respect to a reference value. Magnetoelectric (ME) gradiometer designed in this study is based upon the nickel (Ni)-Pb(Zr,Ti)O(3) (PZT) composites and utilizes the ring-dot piezoelectric transformer structure working near the resonance as the basis. The samples had the ring-dot electrode pattern printed on the top surface of PZT, where ring acts as the input while dot acts as the output. There is an insulation gap between the input and output section of 1.2 mm. The generated magnetic field due to converse ME effect interacts with the external applied magnetic field producing flux gradient, which is detected through the frequency shift and output voltage change in gradiometer structure. The measurements of output voltage dependence on applied magnetic field clearly illustrate that the proposed design can provide high sensitivity and bandwidth.
- Effect of intensive and extensive loss factors on the dynamic response of magnetoelectric laminatesCho, Kyung-Hoon; Park, Chee-Sung; Priya, Shashank (AIP Publishing, 2010-11-01)We report the correlation between intensive and extensive losses in piezoelectric materials with the frequency dependent response of layered magnetoelectric (ME) composites. Three different piezoelectric compositions were synthesized to achieve varying loss characteristics allowing a systematic interpretation of changes in ME coupling in terms of loss components. We clearly demonstrate that intensive dielectric and piezoelectric loss play an important role in controlling the ME sensitivity of layered composites in sub-resonance low frequency range while extensive mechanical loss is dominant factor at resonance condition. Further, the maximum in ME response is obtained at antiresonance frequency of piezoelectrics. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3511285]
- Low-frequency nanotesla sensitivity in Metglas/piezoelectric/carbon fiber/piezoelectric composites with active tip massPark, Chee-Sung; Avirovik, Dragan; Bressers, Scott; Priya, Shashank (AIP Publishing, 2011-02-01)We report nanotesla sensitivity in Metglas/piezoelectric/carbon fiber/piezoelectric laminates with active tip mass operating in the vicinity of second bending mode. The peak magnetoelectric response for the laminate with an active tip mass (1 g) in longitudinal-transversal mode under H(dc)=8 Oe and H(ac)=1 Oe was found to be similar to 1.08 V/cm Oe at 43 Hz (first bending mode) and similar to 19 V/cm Oe at 511 Hz (second bending mode). At the standard 1 kHz frequency, the maximum resolution of 5 nT was measured under H(ac)=0.5 Oe. (C) 2011 American Institute of Physics. [doi:10.1063/1.3552970]
- Magnetoelectric Interactions in Lead-Based and Lead-Free CompositesBichurin, Mirza I.; Petrov, Vladimir M.; Zakharov, Anatoly; Kovalenko, Denis; Yang, Su-Chul; Maurya, Deepam; Bedekar, Vishwas; Priya, Shashank (MDPI, 2011-04-06)Magnetoelectric (ME) composites that simultaneously exhibit ferroelectricity and ferromagnetism have recently gained significant attention as evident by the increasing number of publications. These research activities are direct results of the fact that multiferroic magnetoelectrics offer significant technological promise for multiple devices. Appropriate choice of phases with co-firing capability, magnetostriction and piezoelectric coefficient, such as Ni-PZT and NZFO-PZT, has resulted in fabrication of prototype components that promise transition. In this manuscript, we report the properties of Ni-PZT and NZFO-PZT composites in terms of ME voltage coefficients as a function of frequency and magnetic DC bias. In order to overcome the problem of toxicity of lead, we have conducted experiments with Pb-free piezoelectric compositions. Results are presented on the magnetoelectric performance of Ni-NKN, Ni-NBTBT and NZFO-NKN, NZFO-NBTBT systems illustrating their importance as an environmentally friendly alternative.
- Direct and converse effect in magnetoelectric laminate compositesCho, Kyung-Hoon; Priya, Shashank (AIP Publishing, 2011-06-01)In this letter, we analyze the direct and converse effect in laminate composites of magnetostrictive and piezoelectric materials. Our results deterministically show that direct magnetoelectric (ME) effect is maximized at antiresonance frequency while the converse ME effect is maximized at resonance frequency of the laminate composite. We explain this phenomenon by using piezoelectric constitutive equations and combining it with resonance boundary conditions. The dominant factor controlling the position of peak ME coefficient was found to be frequency dependent capacitance of piezoelectric layer. This study will provide guidance toward the development of magnetic field sensors based on direct effect and communication components based on converse effect. (C) 2011 American Institute of Physics. [doi:10.1063/1.3584863]
- Ferroelectric properties and dynamic scaling of < 100 > oriented (K0.5Na0.5)NbO3 single crystalsGupta, Sanjay; Priya, Shashank (AIP Publishing, 2011-06-01)In this letter, we report the dielectric and ferroelectric (FE) characteristics of potassium sodium niobate (K0.5Na0.5NbO3) single crystals grown by flux method. Orientation analysis of as-grown cubical-shaped crystals was conducted by electron backscattered diffraction technique revealing the < 100 > crystallographic orientation of two opposing major faces. Annealed crystals were found to exhibit FE orthorhombic to FE tetragonal transition temperature of 200 degrees C and Curie temperature of 407 degrees C. Poled < 100 > oriented crystals had longitudinal piezoelectric constant of 148 pC/N. Dielectric measurement as a function of temperature was conducted to determine the second order parameter in Gibbs free energy expansion. Dynamic hysteresis analysis on these crystals showed the power law relations to be of the form < A > proportional to f(0.47Eo-0.85)E(o)(1.45f0.14) and < A > proportional to f(0.04)E(o) below and above the coercive field. (C) 2011 American Institute of Physics. [doi:10.1063/1.3600058]
- Self-biased converse magnetoelectric effectYang, Su-Chul; Cho, Kyung-Hoon; Park, Chee-Sung; Priya, Shashank (AIP Publishing, 2011-11-01)In this letter, we investigate the direct magnetoelectric (DME) and converse magnetoelectric (CME) effects in three-phase metal-ceramic laminate composites. Longitudinally poled and transversely magnetized (L-T) laminate was fabricated by bonding nickel plates between the two particulate magnetoelectric (ME) composite layers of composition 0.8 (0.948 K(0.5)Na(0.5)NbO(3) - 0.052 LiSbO(3)) - 0.2 (Ni(0.8)Zn(0.2)Fe(2)O(4)) (KNNLS-NZF). Under off-resonance condition, the laminates exhibited hysteretic DME and CME responses as a function of applied bias field (H(bias)). Self-biased effect characterized by non-zero ME response at zero H(bias) was observed. The self-biased DME and CME properties were found to be enhanced under resonance conditions. Without external H(bias), magnetic induction switching was possible by applying AC voltage. These results provide the possibility of using self-biased CME effect in electrically controlled memory devices and magnetic flux control devices. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3662420]
- Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramicsYan, Yongke; Cho, Kyung-Hoon; Priya, Shashank (AIP Publishing, 2012-03-01)In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3) O-3-0.25PbZrO(3)-0.35PbTiO(3) (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 degrees C) and Curie temperature (T-C of 234 degrees C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol.% BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k(31)) of T-5BT ceramic started to degrade from 75 degrees C while the random counterpart showed a very stable tendency up to 180 degrees C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol.% BT and subsequently poled at 140 degrees C (T-3BT140) exhibited very stable and high k(31) (>0.53) in a wide temperature range from room temperature to 130 degrees C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d(33) = 720 pC/N, k(31) = 0.53, Q(m) = 403, delta = 0.3% which are very promising for high power and magnetoelectric applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698157]
- Phase transition and temperature stability of piezoelectric properties in Mn-modified Pb(Mg1/3Nb2/3)O-3-PbZrO3-PbTiO3 ceramicsYan, Yongke; Kumar, Amit; Correa, Margarita; Cho, Kyung-Hoon; Katiyar, Ram S.; Priya, Shashank (AIP Publishing, 2012-04-01)This study investigates the effect of two different Mn modifiers [MnO2 and Pb(Mn1/3Nb2/3)O-3(PMnN)] on the of phase transitions in Pb(Mg1/3Nb2/3)O-3-PbZrO3-PbTiO3 ceramics. The temperature dependence of polarization derived from measured pyroelectric current indicated change in nature of phase transition with MnO2 doping. This phenomenon was supported by the temperature evolution of the linear softening of low lying hard lattice mode as revealed by Raman analysis. The grain size was found to increase with MnO2 doping (5X) while decrease with PMnN modification (0.5X). Interestingly, the piezoelectric constant of MnO2 modified composition showed negligible degradation (<1%) even after heat treatment very close to the ferroelectric-paraelectric transition temperature. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3703124]
- Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramicsMaurya, Deepam; Pramanick, Abhijit; An, Ke; Priya, Shashank (AIP Publishing, 2012-04-01)This letter provides a comparative description of the properties of textured and randomly oriented poly-crystalline lead-free piezoelectric 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO(3) (NBT-BT) ceramics. A high longitudinal piezoelectric constant of (d(33)) similar to 322 pC/N was obtained in (001)(PC) textured NBT-7BT ceramics, which is almost similar to 2x times the d(33) coefficient reported for randomly oriented ceramics of the same composition. In situ neutron diffraction experiments revealed that characteristically different structural responses are induced in textured and randomly oriented NBT-BT ceramics upon application of electric fields (E), which are likely related to the varying coherence lengths of polar nanoregions and internal stresses induced by domain switching. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4709404]
- Broadband/Wideband Magnetoelectric ResponsePark, Chee-Sung; Priya, Shashank (Hindawi, 2012-04-08)A broadband/wideband magnetoelectric (ME) composite offers new opportunities for sensing wide ranges of both DC and AC magnetic fields. The broadband/wideband behavior is characterized by flat ME response over a given AC frequency range and DC magnetic bias. The structure proposed in this study operates in the longitudinal-transversal (L-T) mode. In this paper, we provide information on (i) how to design broadband/wideband ME sensors and (ii) how to control the magnitude of ME response over a desired frequency and DC bias regime. A systematic study was conducted to identify the factors affecting the broadband/wideband behavior by developing experimental models and validating them against the predictions made through finite element modeling. A working prototype of the sensor with flat bands for both DC and AC magnetic field conditions was successfully obtained. These results are quite promising for practical applications such as current probe, low-frequency magnetic field sensing, and ME energy harvester.
- Tunable magnetoelectric response of dimensionally gradient laminate compositesPark, Chee-Sung; Avirovik, Dragan; Bichurin, Mirza I.; Petrov, Vladimir M.; Priya, Shashank (AIP Publishing, 2012-05-01)A magnetoelectric (ME) sensor exhibiting wideband behavior as a function of applied magnetic DC bias and frequency was designed by combining the dimensionally gradient piezoelectric layer with Metglas magnetostrictive layers in laminate configuration. The ME coefficient of the band in the DC magnetic range of 52-242 Oe was measured to be 3000 mV/cm Oe under the resonant condition of f = 107 kHz. The wideband in the AC magnetic field frequency range of 41-110 kHz had the ME coefficient in the vicinity of 260 mV/cm Oe under the conditions of H-AC = 1 Oe and H-DC = 70 Oe. This frequency-dependent ME behavior clearly showed two different states on each side of the resonance peak which could open the possibility of developing new applications such as magnetic field-controlled switches. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720095]
- Giant magnetoelectric coupling in laminate thin film structure grown on magnetostrictive substratePark, Chee-Sung; Khachaturyan, Armen G.; Priya, Shashank (AIP Publishing, 2012-05-01)Highly dense 1 mu m-thick piezoelectric film was deposited on magnetostrictive substrate [platinized nickel-zinc ferrite (NZF)]. A strong magnetic coupling between the piezoelectric film and magnetostrictive NZF substrate was measured exhibiting the maximum magnetoelectric (ME) coefficient on the order of 140 mV/cm Oe at the conditions of H-DC = 50 Oe and H-AC = 1Oe at f = 1 kHz. This giant ME coupling under low DC magnetic field condition is attributed to effective elastic coupling. A rotation-type dynamic strain distribution was observed on the PZT film surface which provides information about the nature of elastic coupling. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712132]
- Electromechanical behavior of 001 -textured Pb(Mg1/3Nb2/3)O-3-PbTiO3 ceramicsYan, Yongke; Wang, Yu. U.; Priya, Shashank (AIP Publishing, 2012-05-01)[001]-textured Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) ceramics were synthesized by using templated grain growth method. Significantly high [001] texture degree corresponding to 0.98 Lotgering factor was achieved at 1 vol. % BaTiO3 template. Electromechanical properties for [001]-textured PMN-PT ceramics with 1 vol. % BaTiO3 were found to be d(33) = 1000 pC/N, d(31) = 371 pC/N, epsilon(r) 2591, and tan delta = similar to 0.6%. Elastoelectric composite based modeling results showed that higher volume fraction of template reduces the overall dielectric constant and thus has adverse effect on the piezoelectric response. Clamping effect was modeled by deriving the changes in free energy as a function of applied electric field and microstructural boundary condition. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712563]
- Defect and adsorbate induced ferromagnetic spin-order in magnesium oxide nanocrystallitesKumar, Ashok; Kumar, Jitendra; Priya, Shashank (AIP Publishing, 2012-05-01)We report the correlation between d(0) ferromagnetism, photoluminescence (PL), and adsorbed hydrogen (H-) species in magnesium oxide (MgO) nanocrystallites. Our study suggests that the oxygen vacancies, namely singly ionized anionic vacancies (F+) and dimers (F-2(2+)) induce characteristic photoluminescence and the room-temperature ferromagnetic spin-order. Nanocrystallites with low population of oxygen vacancies have revealed diamagnetic behavior. Intriguingly, on adsorption of hydrogen (H-) species in the MgO nanocrystallites, ferromagnetic behavior was either enhanced (in the case of highly oxygen deficient nanocrystallites) or begun to percolate (in the case of nanocrystallite with low population density of oxygen vacancies). (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712058]
- Harvesting Energy from the Counterbalancing (Weaving) Movement in Bicycle RidingYang, Yoonseok; Yeo, Jeongjin; Priya, Shashank (MDPI, 2012-07-30)Bicycles are known to be rich source of kinetic energy, some of which is available for harvesting during speedy and balanced maneuvers by the user. A conventional dynamo attached to the rim can generate a large amount of output power at an expense of extra energy input from the user. However, when applying energy conversion technology to human powered equipments, it is important to minimize the increase in extra muscular activity and to maximize the efficiency of human movements. This study proposes a novel energy harvesting methodology that utilizes lateral oscillation of bicycle frame (weaving) caused by user weight shifting movements in order to increase the pedaling force in uphill riding or during quick speed-up. Based on the 3D motion analysis, we designed and implemented the prototype of an electro-dynamic energy harvester that can be mounted on the bicycle's handlebar to collect energy from the side-to-side movement. The harvester was found to generate substantial electric output power of 6.6 mW from normal road riding. It was able to generate power even during uphill riding which has never been shown with other approaches. Moreover, harvesting of energy from weaving motion seems to increase the economy of cycling by helping efficient usage of human power.
- Thermal conductivity of self-assembled nano-structured ZnO bulk ceramicsZhao, Yu; Yan, Yongke; Kumar, Ashok; Wang, Hsin; Porter, Wallace D.; Priya, Shashank (American Institute of Physics, 2012-08-01)In this study, we describe the changes in thermal conductivity behavior of ZnO-Al micro- and nano-two-phase self-assembled composites with varying grain sizes. The reduction in thermal conductivity values of micro-composites was limited to similar to 15% for ZnO-4% Al. However, nano-composites exhibited large reduction, by a factor of about three, due to uniform distribution of nano-precipitates (ZnAl2O4) and large grain boundary area. Interestingly, the micro-composites revealed continuous decrease in thermal conductivity with increase in Al substitution while the nano-composites exhibited the lowest magnitudes for 2% Al concentration. Raman spectra indicated that phonon confinement in ZnO-Al nano-composites causes drastic decrease in the value of thermal conductivity. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745034]