Scholarly Works, Entomology
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Entomology by Title
Now showing 1 - 20 of 445
Results Per Page
Sort Options
- 2016 Southeast Regional Bunch Grape Integrated Management GuideNita, Mizuho; Burrack, Hannah J.; Pfeiffer, Douglas G.; Mitchem, Wayne; Lockwood, David; Bellinger, Robert (2016-04-04)While not technically a numbered VCE publication, this is produced by a group of extension specialists in the southeastern region. CALS is a member of the Southeastern Small Fruit Consortium, the producer of this guide.
- 2016 Southeast Regional Caneberry Integrated Management Guide. Southeastern Small Fruit ConsortiumBrannen, Philip; Schnabel, Guido; Burrack, Hannah J.; Bessin, Richard; Pfeiffer, Douglas G.; Mitchem, Wayne; Jennings, Katie; Lockwood, David; Fernandez, Gina; Sial, Ash (2016-04-04)While not technically a numbered VCE publication, this is produced by a group of extension specialists in the southeastern region. CALS is a member of the Southeastern Small Fruit Consortium, the producer of this guide
- 2016 Spray Bulletin for Commercial Tree Fruit GrowersPfeiffer, Douglas G.; Bergh, J. Christopher; Frank, Daniel L.; Hooks, C. R. R.; Walsh, C. S.; Yoder, Keith S.; Rahan, Mahfaz; Kotcon, J. B.; Derr, Jeffrey F.; Chandran, Rakesh S.; Weaver, Michael W.; Brown, Amy; Parkhurst, James A. (2016-01-01)This is a multi-state guide, with orchard recommendations for Virginia, West Virginia and Maryland.
- 2020 Spray Bulletin for Commercial Tree Fruit Growers: Virginia, West Virginia, and University of MarylandPfeiffer, Douglas G.; Bergh, J. Christopher; Wilson, James; Hooks, C. R. R.; Sherif, Sherif M.; Walsh, C. S.; Yoder, Keith S.; Rahman, Mahfaz; Kotcon, J. B.; Derr, Jeffrey F.; Chandran, Rakesh S.; Frank, Daniel L.; Wycoff, Stephanie B.; Brown, Amy; Parkhurst, James A. (2020)Integrated pest management (IPM) is the approach emphasized in this guide; some aspects of IPM are incorporated throughout, although this guide mainly deals with the chemical component of IPM. IPM combines biological control from predators with selective chemical application for maintaining pest populations below economic threshold levels. This approach requires that growers give careful consideration to the selection, application rate and timing of chemical sprays. The degree of integration achieved will vary according to the management ability, training and objectives of the orchardist. Inadequate monitoring or implementation of IPM practices will lead to unsatisfactory results. In order to encourage the biological control components of the program, growers must consider the toxicity of chemicals to predators (Table 9, page 59) in addition to their efficacy against fruit pests (Tables 7 and 8, pages 56-58)...
- 2D and 3D Chromosome Painting in Malaria MosquitoesGeorge, Phillip; Sharma, Atashi; Sharakhov, Igor V. (Journal of Visualized Experiments, 2014-01-01)Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.
- 3D X-ray analysis of the subterranean burrowing depth and pupal chamber size of Laricobius (Coleoptera: Derodontidae), a specialist predator of Adelges tsugae (Hemiptera: Adelgidae)Hillen, Ashleigh P.; Foley, Jeremiah R.; Salcedo, Mary K.; Socha, John J.; Salom, Scott M. (Oxford University Press, 2023-05-01)The non-native hemlock woolly adelgid (HWA), Adelges tsugae Annand (Hemiptera: Adelgidae), has caused a significant decline of eastern hemlock, Tsuga canadensis L. (Pinales: Pinaceae), and Carolina hemlock, Tsuga caroliniana Engelmann (Pinales: Pinaceae), in eastern North America. Biological control of HWA has focused on the use of 2 Laricobius spp. (Coleoptera: Derodontidae), natural predators of HWA, which require arboreal and subterranean life phases to complete their development. In its subterranean phase, Laricobius spp. are subject to abiotic factors including soil compaction or soil-applied insecticides used to protect hemlock from HWA. This study used 3D X-ray microcomputed tomography (micro-CT) to identify the depth at which Laricobius spp. burrows during its subterranean lifecycle, characterize pupal chamber volume, and determine whether soil compaction had a significant effect on these variables. The mean burrowing depth in the soil of individuals was 27.0 mm ± 14.8 (SD) and 11.4 mm ± 11.8 (SD) at compaction levels of 0.36 and 0.54 g/ cm3, respectively. The mean pupal chamber volume was 11.15 mm3 ± 2.8 (SD) and 7.65 mm3 ± 3.5 (SD) in soil compacted at 0.36 and 0.54 g/cm3, respectively. These data show that soil compaction influences burrowing depth and pupal chamber size for Laricobius spp.This information will help us better identify the effect of soil-applied insecticide residues on estivating Laricobius spp. and soil-applied insecticide residues in the field. Additionally, these results demonstrate the utility of 3D micro-CT in assessing subterranean insect activity in future studies.
- A naturally derived biomaterial formulation for improved menstrual careBataglioli, Rogerio Aparecido; Kaur, Harsimran; Muller, John; Geddes, Elizabeth; Champine, Carrie; Hsu, Bryan B. (Cell Press, 2024-07-10)Adequately managing menstruation is an important factor in the overall quality of life for women. With a growing discussion of the global need for its improvement, it is clear that better management of menstruation can positively influence social, educational, and professional outcomes. Herein, we describe a biopolymer-based formulation that gels blood in a mechanism alternative to coagulation. We first tested several biopolymer mixtures with blood and quantified increases in viscosity, finding that high-molecular-weight alginate in combination with glycerol could rapidly absorb and gel blood. We then demonstrated that this powder could be deployed both as a traditional menstrual pad filler and as an additive to menstrual cups to reduce leakage and spillage, respectively. Finally, we include an antimicrobial polymer to impair the growth of Staphylococcus aureus, a bacterium associated with toxic shock syndrome. Collectively, our work describes a biodegradable formulation derived from renewable resources that can improve menstrual care.
- Aedes aegypti sialokinin facilitates mosquito blood feeding and modulates host immunity and vascular biologyMartin-Martin, Ines; Leon, Paola Carolina Valenzuela; Amo, Laura; Shrivastava, Gaurav; Iniguez, Eva; Aryan, Azadeh; Brooks, Steven; Kojin, Bianca B.; Williams, Adeline E.; Bolland, Silvia; Ackerman, Hans; Adelman, Zach N.; Calvo, Eric (Cell Press, 2022-04-12)Saliva from mosquitoes contains vasodilators that antagonize vasoconstrictors produced at the bite site. Sialokinin is a vasodilator present in the saliva of Aedes aegypti. Here, we investigate its function and describe its mechanism of action during blood feeding. Sialokinin induces nitric oxide release similar to substance P. Sialokinin-KO mosquitoes produce lower blood perfusion than parental mosquitoes at the bite site during probing and have significantly longer probing times, which result in lower blood feeding success. In contrast, there is no difference in feeding between KO and parental mosquitoes when using artificial membrane feeders or mice that are treated with a substance P receptor antagonist, confirming that sialokinin interferes with host hemostasis via NK1R signaling. While sialokinin-KO saliva does not affect virus infection in vitro, it stimulates macrophages and inhibits leukocyte recruitment in vivo. This work highlights the biological functionality of salivary proteins in blood feeding.
- Alphavirus Particles Can Assemble with an Alternate Triangulation NumberKaelber, Jason T.; Chmielewski, David; Chiu, Wah; Auguste, Albert J. (MDPI, 2022-11-27)Alphaviruses are spherical, enveloped RNA viruses primarily transmitted by mosquitoes, and cause significant arthritogenic and neurotropic disease in humans and livestock. Previous reports have shown that—in contrast to prototypical icosahedral viruses—alphaviruses incorporate frequent defects, and these may serve important functions in the viral life cycle. We confirm the genus-wide pleomorphism in live viral particles and extend our understanding of alphavirus assembly through the discovery of an alternate architecture of Eastern equine encephalitis virus (EEEV) particles. The alternate T = 3 icosahedral architecture differs in triangulation number from the classic T = 4 icosahedral organization that typifies alphaviruses, but the alternate architecture maintains the quasi-equivalence relationship of asymmetric units. The fusion spike glycoproteins are more loosely apposed in the T = 3 form with corresponding changes in the underlying capsid protein lattice. This alternate architecture could potentially be exploited in engineering alphavirus-based particles for delivery of alphaviral or other RNA.
- Ambient Air Temperature Does Not Predict whether Small or Large Workers Forage in Bumble Bees (Bombus impatiens).Couvillon, Margaret J.; Fitzpatrick, Ginny; Dornhaus, Anna (2010)Bumble bees are important pollinators of crops and other plants. However, many aspects of their basic biology remain relatively unexplored. For example, one important and unusual natural history feature in bumble bees is the massive size variation seen between workers of the same nest. This size polymorphism may be an adaptation for division of labor, colony economics, or be nonadaptive. It was also suggested that perhaps this variation allows for niche specialization in workers foraging at different temperatures: larger bees might be better suited to forage at cooler temperatures and smaller bees might be better suited to forage at warmer temperatures. This we tested here using a large, enclosed growth chamber, where we were able to regulate the ambient temperature. We found no significant effect of ambient or nest temperature on the average size of bees flying to and foraging from a suspended feeder. Instead, bees of all sizes successfully flew and foraged between 16°C and 36°C. Thus, large bees foraged even at very hot temperatures, which we thought might cause overheating. Size variation therefore could not be explained in terms of niche specialization for foragers at different temperatures.
- Ambient moisture causes methomyl residues on corn plants to rapidly lose toxicity to the pest slug, Arion subfuscus, Muller (Gastropoda, Stylommatophora)Nottingham, Louis B.; Kuhar, Thomas P. (Elsevier, 2021-09-01)The carbamate insecticide methomyl is sometimes used to control slugs in field corn and soybean by foliar applications, but control outcomes in research trials and commercial operations have been mixed. In this study, laboratory bioassays were conducted on dusky slug, Arion subfuscus Müller, a common pest of corn and soybean in the Mid-Atlantic United States, to evaluate residual toxicity of Lannate LV (methomyl) at low and high concentrations corresponding to label recommended field rates, and if toxicity may be affected by ambient moisture or repellency to treated plants. Without wetting events, methomyl residues on corn plants caused 90–100% mortality of A. subfuscus for two days and 70–90% mortality for six days. When corn plants were briefly misted with ca. 0.3 cm of water 6 h after methomyl application, mortality was 36% 12 h after treatment, and 0 to 5% 24 h after treatment for both low and high rates. Repellency of A. subfuscus to corn plants treated with the high rate of methomyl was narrowly significant (P = 0.04) and low rate was not significant. These results suggest that high ambient moisture needed to elicit slug activity in the field also abates toxicity of methomyl residues, explaining why field control is usually poor despite high mortality in the lab.
- Analysis of Recent Interception Records Reveals Frequent Transport of Arboreal Ants and Potential Predictors for Ant Invasion in TaiwanLee, Ching-Chen; Weng, Yi-Meng; Lai, Li-Chuan; Suarez, Andrew V.; Wu, Wen-Jer; Lin, Chung-Chi; Yang, Chin-Cheng Scotty (2020-06-08)We uncovered taxonomic diversity, country of origin and commodity type of intercepted ants at Taiwanese borders based on an 8 year database of 439 interception records. We found intercepted ants arrived predominantly via timber, a pattern likely reflecting the high domestic demand for foreign timber in Taiwan. The most frequently intercepted species were either arboreal or wood-dwelling ants, raising a concern of these ants constituting a next wave of ant invasion in Taiwan. Further analyses indicate that the taxonomic composition of intercepted ants does not match that of established non-native ant species, suggesting that interception data alone fails to provide adequate power to predict the establishment success of ants. Yet, interception frequency and selected life-history traits (i.e., flexible colony founding mode and general nesting habits) were shown to jointly serve as a practical predictor of the establishment risk of non-native ants. Consistent with other border interception databases, secondary introduction (i.e., species arriving from their introduced ranges instead of their native ranges) also represents a major pathway for transport of invasive ants into Taiwan, suggesting its role in shaping the global invasion of ants. Our findings offer baseline information for constructing a prediction framework for future ant invasions and assist in the decision-making process of quarantine authorities in Taiwan.
- Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagationMiller, Jason R.; Koren, Sergey; Dilley, Kari A.; Puri, Vinita; Brown, David M.; Harkins, Derel M.; Thibaud-Nissen, Françoise; Rosen, Benjamin D.; Xiao-Guang, Chen; Tu, Zhijian Jake; Sharakhov, Igor V.; Sharakhova, Maria V.; Sebra, R.; Stockwell, T. B.; Bergman, N. H.; Sutton, G. G.; Phillippi, A. M.; Pieemarini, P. M.; Shabman, R. S. (2018-03)The 50-year old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome.
- Ancient and modern colonization of North America by hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae), an invasive insect from East AsiaHavill, Nathan P.; Shiyake, Shigehiko; Galloway, Ashley Lamb; Foottit, Robert G.; Yu, Guoyue; Paradis, Annie; Elkinton, Joseph S.; Montgomery, Michael E.; Sano, Masakazu; Caccone, Adalgisa (2016-05)Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host specialization could help predict invasion by insect herbivores. We identified eight endemic lineages of hemlock adelgids in central China, western China, Ulleung Island (South Korea), western North America, and two each in Taiwan and Japan, with the Japanese lineages specializing on different Tsuga species. Adelgid life cycles varied at local and continental scales with different sexual, obligately asexual and facultatively asexual lineages. Adelgids in western North America exhibited very high microsatellite heterozygosity, which suggests ancient asexuality. The earliest lineages diverged in Asia during Pleistocene glacial periods, as estimated using approximate Bayesian computation. Colonization of western North America was estimated to have occurred prior to the last glacial period by adelgids directly ancestral to those in southern Japan, perhaps carried by birds. The modern invasion from southern Japan to eastern North America caused an extreme genetic bottleneck with just two closely related clones detected throughout the introduced range. Both colonization events to North America involved host shifts to unrelated hemlock species. These results suggest that genetic diversity, host specialization and host phylogeny are not predictive of adelgid invasion. Monitoring non-native sentinel host trees and focusing on invasion pathways might be more effective methods of preventing invasion than making predictions using species traits or evolutionary history.
- Anopheles mosquitoes reveal new principles of 3D genome organization in insectsLukyanchikova, Varvara; Nuriddinov, Miroslav; Belokopytova, Polina; Taskina, Alena; Liang, Jiangtao; Reijnders, Maarten J. M. F.; Ruzzante, Livio; Feron, Romain; Waterhouse, Robert M.; Wu, Yang; Mao, Chunhong; Tu, Zhijian Jake; Sharakhov, Igor V.; Fishman, Veniamin (Nature Portfolio, 2022-04-12)Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for similar to 100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.
- Apheloria polychroma, a new species of millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae)Marek, Paul E.; Means, Jackson C.; Hennen, Derek A. (Zootaxa, 2018-01-25)Millipedes of the genus Apheloria Chamberlin, 1921 occur in temperate broadleaf forests throughout eastern North America and west of the Mississippi River in the Ozark and Ouachita Mountains. Chemically defended with toxins made up of cyanide and benzaldehyde, the genus is part of a community of xystodesmid millipedes that compose several Müllerian mimicry rings in the Appalachian Mountains. We describe a model species of these mimicry rings, Apheloria polychroma n. sp., one of the most variable in coloration of all species of Diplopoda with more than six color morphs, each associated with a separate mimicry ring.
- Apple orchards feed honey bees during, but even more so after, bloomSteele, Taylor N.; Schürch, Roger; Ohlinger, Bradley D.; Couvillon, Margaret J. (Wiley, 2022-09-01)Many of the fruits that add diversity and nutrition to our diet are wholly or partially dependent upon flower-visiting insects. For example, apples (Malus spp.) are self-incompatible and therefore rely on insect pollinators for fruit development and seed production. Honey bees (Apis mellifera) are often migrated into these orchards when the apples are in bloom. While previous studies have focused on the impact of honey bees to fruit orchards, fewer studies have examined the reciprocal relationship of the orchards to honey bees, particularly if the bees are in the orchard for the entire foraging season, not just during bloom. Here we investigated the foraging dynamics of honey bees in apple orchards in Virginia for two full foraging seasons (April–October, 2018–2019). We decoded, mapped, and analyzed the waggle dances (n = 3710) made by returning foragers, which communicate the distance and direction from the hive to valuable resources, usually nectar or pollen. We found that bees foraged locally at <2 km throughout the season in both 2018 and 2019, with some long-range recruitment of up to 11 km. Contrary to our expectations, apple blooms did not drive honey bee foraging. We determined in our calculations of percent (%) foraging that honey bees recruit more to the apple orchards after the bloom than during the bloom (29.4% vs. 18.6% in 2018 and 28.5% vs. 21.4% in 2019, respectively). Interestingly, honey bees recruited more to forests while the apples bloomed (36.9% and 25.7% in 2018 and 2019, respectively). Lastly, our odds ratio analysis, which includes a distance correction, indicates the honey bees were more than twice as likely to recruit to apple orchards in June, which is after the bloom, than in April or May, which is during the bloom. Our ground truthing revealed that post-bloom apple orchards provided foraging opportunities on the growing understory of red and white clover (Trifolium spp.) and plantain (Plantago spp.). These data might therefore have important implications for best management practice decisions for bees located in fruit orchards.
- Arm-specific dynamics of chromosome evolution in malaria mosquitoesSharakhova, Maria V.; Xia, Ai; Leman, Scotland C.; Sharakhov, Igor V. (Biomed Central, 2011-04-07)Background: The malaria mosquito species of subgenus Cellia have rich inversion polymorphisms that correlate with environmental variables. Polymorphic inversions tend to cluster on the chromosomal arms 2R and 2L but not on X, 3R and 3L in Anopheles gambiae and homologous arms in other species. However, it is unknown whether polymorphic inversions on homologous chromosomal arms of distantly related species from subgenus Cellia nonrandomly share similar sets of genes. It is also unclear if the evolutionary breakage of inversion-poor chromosomal arms is under constraints. Results: To gain a better understanding of the arm-specific differences in the rates of genome rearrangements, we compared gene orders and established syntenic relationships among Anopheles gambiae, Anopheles funestus, and Anopheles stephensi. We provided evidence that polymorphic inversions on the 2R arms in these three species nonrandomly captured similar sets of genes. This nonrandom distribution of genes was not only a result of preservation of ancestral gene order but also an outcome of extensive reshuffling of gene orders that created new combinations of homologous genes within independently originated polymorphic inversions. The statistical analysis of distribution of conserved gene orders demonstrated that the autosomal arms differ in their tolerance to generating evolutionary breakpoints. The fastest evolving 2R autosomal arm was enriched with gene blocks conserved between only a pair of species. In contrast, all identified syntenic blocks were preserved on the slowly evolving 3R arm of An. gambiae and on the homologous arms of An. funestus and An. stephensi. Conclusions: Our results suggest that natural selection favors specific gene combinations within polymorphic inversions when distant species are exposed to similar environmental pressures. This knowledge could be useful for the discovery of genes responsible for an association of inversion polymorphisms with phenotypic variations in multiple species. Our data support the chromosomal arm specificity in rates of gene order disruption during mosquito evolution. We conclude that the distribution of breakpoint regions is evolutionary conserved on slowly evolving arms and tends to be lineage-specific on rapidly evolving arms.
- Arthropod Pest Management Research on Vegetables in Virginia - 2010Kuhar, Thomas P.; Schultz, Peter B.; Doughty, Hélène; Jenrette, James (Virginia Cooperative Extension, 2011-02-22)Describes arthropod pest management research on vegetable crops including evaluation of federally-labelled and experimental insecticides.
- Arthropod Pest Management Research on Vegetables in Virginia - 2011Kuhar, Thomas P.; Schultz, Peter B.; Doughty, Hélène; Kamminga, Katherine; Jenrette, James (Virginia Cooperative Extension, 2012-02-01)Describes arthropod pest management research on vegetable crops including evaluation of federally-labelled and experimental insecticides.