Scholarly Works, Entomology

Permanent URI for this collection

Research articles, presentations, and other scholarship

Browse

Recent Submissions

Now showing 1 - 20 of 445
  • Genomic Epidemiology of Rift Valley Fever Virus Involved in the 2018 and 2022 Outbreaks in Livestock in Rwanda
    Nsengimana, Isidore; Juma, John; Roesel, Kristina; Gasana, Methode N.; Ndayisenga, Fabrice; Muvunyi, Claude M.; Hakizimana, Emmanuel; Hakizimana, Jean N.; Eastwood, Gillian; Chengula, Augustino A.; Bett, Bernard; Kasanga, Christopher J.; Oyola, Samuel O. (MDPI, 2024-07-17)
    Rift Valley fever (RVF), a mosquito-borne transboundary zoonosis, was first confirmed in Rwanda’s livestock in 2012 and since then sporadic cases have been reported almost every year. In 2018, the country experienced its first large outbreak, which was followed by a second one in 2022. To determine the circulating virus lineages and their ancestral origin, two genome sequences from the 2018 outbreak, and thirty-six, forty-one, and thirty-eight sequences of small (S), medium (M), and large (L) genome segments, respectively, from the 2022 outbreak were generated. All of the samples from the 2022 outbreak were collected from slaughterhouses. Both maximum likelihood and Bayesian-based phylogenetic analyses were performed. The findings showed that RVF viruses belonging to a single lineage, C, were circulating during the two outbreaks, and shared a recent common ancestor with RVF viruses isolated in Uganda between 2016 and 2019, and were also linked to the 2006/2007 largest East Africa RVF outbreak reported in Kenya, Tanzania, and Somalia. Alongside the wild-type viruses, genetic evidence of the RVFV Clone 13 vaccine strain was found in slaughterhouse animals, demonstrating a possible occupational risk of exposure with unknown outcome for people working in meat-related industry. These results provide additional evidence of the ongoing wide spread of RVFV lineage C in Africa and emphasize the need for an effective national and international One Health-based collaborative approach in responding to RVF emergencies.
  • Hybridization between Aedes aegypti and Aedes mascarensis mosquitoes leads to disruption of male sex determination
    Liang, Jiangtao; Kang, Lin; Michalak, Pawel; Sharakhov, Igor V. (Springer Nature, 2024-07-22)
    Understanding the sex determination pathway and its disruptions in mosquitoes is critical for the effective control of disease vectors through genetic manipulations based on sex separation. When male hybrids of Aedes aegypti females and Ae. mascarensis males are backcrossed to Ae. aegypti females, a portion of the backcross progeny manifests as males with abnormal sexual differentiation. We discovered a significant correlation between pupal abnormalities and the feminization of subsequent adults exemplified by the relative abundance of ovarian and testicular tissues. All intersex individuals were genetic males as they expressed a male determining factor, Nix. Further, our analysis of the sex-specific splicing of doublesex and fruitless transcripts demonstrated the presence of both male and female splice variants indicating that sex determination is disrupted. A comparative transcriptomic analysis revealed similar expression levels of most female-associated genes in reproductive organs and carcasses between intersexual males and normal females. Moreover, intersexes had largely normal gene expression in testes but significant gene downregulation in male accessory glands when compared with normal males. We conclude that evolving hybrid incompatibilities between Ae. aegypti and Ae. mascarensis involve disruption of sex determination and are accompanied by changes in gene expression associated with sexual differentiation.
  • A naturally derived biomaterial formulation for improved menstrual care
    Bataglioli, Rogerio Aparecido; Kaur, Harsimran; Muller, John; Geddes, Elizabeth; Champine, Carrie; Hsu, Bryan B. (Cell Press, 2024-07-10)
    Adequately managing menstruation is an important factor in the overall quality of life for women. With a growing discussion of the global need for its improvement, it is clear that better management of menstruation can positively influence social, educational, and professional outcomes. Herein, we describe a biopolymer-based formulation that gels blood in a mechanism alternative to coagulation. We first tested several biopolymer mixtures with blood and quantified increases in viscosity, finding that high-molecular-weight alginate in combination with glycerol could rapidly absorb and gel blood. We then demonstrated that this powder could be deployed both as a traditional menstrual pad filler and as an additive to menstrual cups to reduce leakage and spillage, respectively. Finally, we include an antimicrobial polymer to impair the growth of Staphylococcus aureus, a bacterium associated with toxic shock syndrome. Collectively, our work describes a biodegradable formulation derived from renewable resources that can improve menstrual care.
  • Ecology and geography of Cache Valley virus assessed using ecological niche modeling
    Muller, John A.; López, Krisangel; Escobar, Luis E.; Auguste, A. Jonathan (2024-06-26)
    Background: Cache Valley virus (CVV) is an understudied Orthobunyavirus with a high spillover transmission potential due to its wide geographical distribution and large number of associated hosts and vectors. Although CVV is known to be widely distributed throughout North America, no studies have explored its geography or employed computational methods to explore the mammal and mosquito species likely participating in the CVV sylvatic cycle. Methods: We used a literature review and online databases to compile locality data for CVV and its potential vectors and hosts. We linked location data points with climatic data via ecological niche modeling to estimate the geographical range of CVV and hotspots of transmission risk. We used background similarity tests to identify likely CVV mosquito vectors and mammal hosts to detect ecological signals from CVV sylvatic transmission. Results: CVV distribution maps revealed a widespread potential viral occurrence throughout North America. Ecological niche models identified areas with climate, vectors, and hosts suitable to maintain CVV transmission. Our background similarity tests identified Aedes vexans, Culiseta inornata, and Culex tarsalis as the most likely vectors and Odocoileus virginianus (white-tailed deer) as the most likely host sustaining sylvatic transmission. Conclusions: CVV has a continental-level, widespread transmission potential. Large areas of North America have suitable climate, vectors, and hosts for CVV emergence, establishment, and spread. We identified geographical hotspots that have no confirmed CVV reports to date and, in view of CVV misdiagnosis or underreporting, can guide future surveillance to specific localities and species.
  • Free ride without raising a thumb: A citizen science project reveals the pattern of active ant hitchhiking on vehicles and its ecological implications
    Hsu, Feng-Chuan; Hsu, Gen-Chang; Lee, Ching-Chen; Lin, Chung-Chi; Ho, Chuan-Kai; Yang, Chin-Cheng Scotty (Wiley, 2024-04)
    1. Species hitchhiking on human transportation objects such as vehicles can facilitate long-distance dispersal of organisms, allowing increased probabilities of successful biological invasions. In Taiwan, there have been observations of ants actively moving onto motor vehicles (defined as ‘ant hitchhiking’ hereafter), yet no study has explored this phenomenon. 2. Here, we provide the first qualitative and quantitative report on ant hitchhiking behaviour using citizen science data. From 2017 to 2023, 52 cases of ant hitchhiking on vehicles were reported (at least three cases with queen[s] and another eight cases with brood), attributed to nine species. Seven of the nine species were exotic/invasive. Arboreal or semi-arboreal ant species, particularly the exotic black cocoa ant (Dolichoderus thoracicus), accounted for over half of the reported cases. The parking duration of the vehicles on which the ants hitchhiked ranged from several hours to over a month (30 cases occurred within a day). Moreover, more cases were reported in the warmer seasons (spring and summer) than in the colder seasons (fall and winter). 3. To our knowledge, this study represents the first effort to profile active ant hitchhiking on vehicles. We encourage future studies to examine the abiotic and biotic factors that determine the success of hitchhiking events to better predict the spread of exotic/invasive ants and to develop effective management strategies for preventing their biological invasions.
  • Influence of Fungicide Application on Rhizosphere Microbiota Structure and Microbial Secreted Enzymes in Diverse Cannabinoid-Rich Hemp Cultivars
    Xu, Junhuan; Knight, Tyson; Boone, Donchel; Saleem, Muhammad; Finley, Sheree J.; Gauthier, Nicole; Ayariga, Joseph A.; Akinrinlola, Rufus; Pulkoski, Melissa; Britt, Kadie; Tolosa, Tigist; Rosado-Rivera, Yara I.; Iddrisu, Ibrahim; Thweatt, Ivy; Li, Ting; Zebelo, Simon; Burrack, Hannah; Thiessen, Lindsey; Hansen, Zachariah; Bernard, Ernest; Kuhar, Thomas; Samuel-Foo, Michelle; Ajayi, Olufemi S. (MDPI, 2024-05-28)
    Microbes and enzymes play essential roles in soil and plant rhizosphere ecosystem functioning. However, fungicides and plant root secretions may impact the diversity and abundance of microbiota structure and enzymatic activities in the plant rhizosphere. In this study, we analyzed soil samples from the rhizosphere of four cannabinoid-rich hemp (Cannabis sativa) cultivars (Otto II, BaOx, Cherry Citrus, and Wife) subjected to three different treatments (natural infection, fungal inoculation, and fungicide treatment). DNA was extracted from the soil samples, 16S rDNA was sequenced, and data were analyzed for diversity and abundance among different fungicide treatments and hemp cultivars. Fungicide treatment significantly impacted the diversity and abundance of the hemp rhizosphere microbiota structure, and it substantially increased the abundance of the phyla Archaea and Rokubacteria. However, the abundances of the phyla Pseudomonadota and Gemmatimonadetes were substantially decreased in treatments with fungicides compared to those without fungicides in the four hemp cultivars. In addition, the diversity and abundance of the rhizosphere microbiota structure were influenced by hemp cultivars. The influence of Cherry Citrus on the diversity and abundance of the hemp rhizosphere microbiota structure was less compared to the other three hemp cultivars (Otto II, BaOx, and Wife). Moreover, fungicide treatment affected enzymatic activities in the hemp rhizosphere. The application of fungicides significantly decreased enzyme abundance in the rhizosphere of all four hemp cultivars. Enzymes such as dehydrogenase, dioxygenase, hydrolase, transferase, oxidase, carboxylase, and peptidase significantly decreased in all the four hemp rhizosphere treated with fungicides compared to those not treated. These enzymes may be involved in the function of metabolizing organic matter and degrading xenobiotics. The ecological significance of these findings lies in the recognition that fungicides impact enzymes, microbiota structure, and the overall ecosystem within the hemp rhizosphere.
  • Solving the 250-year-old mystery of the origin and global spread of the German cockroach, Blattella germanica
    Tang, Qian; Vargo, Edward L.; Ahmad, Intan; Jiang, Hong; Varadínová, Zuzana Kotyková; Dovih, Pilot; Kim, Dongmin; Bourguignoni, Thomas; Booth, Warren; Schall, Coby; Mukha, Dmitry V.; Rheindt, Frank E.; Evans, Theodore A. (National Academy of Sciences, 2024-05-20)
    The origin of the German cockroach, Blattella germanica, is enigmatic, in part because it is ubiquitous worldwide in human-built structures but absent from any natural habitats. The first historical records of this species are from ca. 250 years ago (ya) from central Europe (hence its name). However, recent research suggests that the center of diversity of the genus is Asian, where its closest relatives are found. To solve this paradox, we sampled genome-wide markers of 281 cockroaches from 17 countries across six continents. We confirm that B. germanica evolved from the Asian cockroach Blattella asahinai approximately 2,100 ya, probably by adapting to human settlements in India or Myanmar. Our genomic analyses reconstructed two primary global spread routes, one older, westward route to the Middle East coinciding with various Islamic dynasties (~1,200 ya), and another younger eastward route coinciding with the European colonial period (~390 ya). While Europe was not central to the early domestication and spread of the German cockroach, European advances in long-distance transportation and temperature-controlled housing were likely important for the more recent global spread, increasing chances of successful dispersal to and establishment in new regions. The global genetic structure of German cockroaches further supports our model, as it generally aligns with geopolitical boundaries, suggesting regional bridgehead populations established following the advent of international commerce.
  • Widespread Circulation of Tick-Borne Viruses in Virginia—Evidence of Exposure to Heartland, Bourbon, and Powassan Viruses in Wildlife and Livestock
    Garba, Ahmed; Riley, Jennifer; Lahmers, Kevin K.; Eastwood, Gillian (MDPI, 2024-04-30)
    Emerging tick-borne viruses such as Powassan virus (POWV), Bourbon virus (BRBV), and Heartland virus (HRTV), whilst rare, can cause severe health problems in humans. While limited clinical cases have been reported thus far in Virginia, the presence of tick-borne viruses poses a serious health threat, and the extent of their prevalence in Virginia is unknown. Here, we sought evidence of POWV, BRBV, and HRTV exposure in Virginia via a serological assessment of wildlife and livestock. Wildlife in Virginia were found to be seropositive against POWV (18%), BRBV (8%), and HRTV (5%), with western and northern regions of the state having a higher prevalence. Multiple wildlife species were shown to have been exposed to each virus examined. To a lesser extent, cattle also showed exposure to tick-borne viruses, with seroprevalences of 1%, 1.2%, and 8% detected in cattle against POWV, BRBV, and HRTV, respectively. Cross-reactivity against other known circulating mosquito-borne flaviviruses was ruled out. In conclusion, there is widespread exposure to tick-borne viruses in western and northern Virginia, with exposure to a diverse range of animal populations. Our study provides the first confirmation that HRTV is circulating in the Commonwealth. These findings strengthen the existing evidence of emerging tick-borne viruses in Virginia and highlight the need for public health vigilance to avoid tick bites.
  • Comparing Entomology-Themed Outreach Events: Annual Festivals and Open Houses in the United States
    Wycoff, Stephanie Blevins; Frank, Daniel L.; Weaver, Michael J. (MDPI, 2024-05-07)
    Over the past several decades, there has been a growing prevalence of entomology-themed outreach events, which seek to educate the public about insects and other arthropods, fostering a greater appreciation and understanding of these often misunderstood organisms. In 2016, a comparative analysis was initiated to identify science institutions across the United States engaged in providing annual entomology-themed outreach events to the public. Utilizing literature reviews and online searches, several science institutions were identified and subsequently contacted to partake in a survey regarding their events. The survey received a response rate of 93%. Results from the survey offered valuable insights into these entomology-themed outreach events, including records of attendance, event structures, funding sources, popular exhibits, and the impacts on attendees, hosting institutions, and local communities. While the majority of these events have remained in place since the survey, many have experienced significant disruptions due to the COVID-19 pandemic, prompting some to adapt to innovative online formats and virtual experiences. Despite these challenges, the commitment to entomological outreach continues today, highlighting the resilience and adaptability of the entomology community.
  • Two Nested Inversions in the X Chromosome Differentiate the Dominant Malaria Vectors in Europe, Anopheles atroparvus and Anopheles messeae
    Soboleva, Evgenia S.; Kirilenko, Kirill M.; Fedorova, Valentina S.; Kokhanenko, Alina A.; Artemov, Gleb N.; Sharakhov, Igor V. (MDPI, 2024-04-26)
    The Maculipennis subgroup of malaria mosquitoes includes both dominant malaria vectors and non-vectors in Eurasia. Understanding the genetic factors, particularly chromosomal inversions, that differentiate Anopheles species can provide valuable insights for vector control strategies. Although autosomal inversions between the species in this subgroup have been characterized based on the chromosomal banding patterns, the number and positions of rearrangements in the X chromosome remain unclear due to the divergent banding patterns. Here, we identified two large X chromosomal inversions, approximately 13 Mb and 10 Mb in size, using fluorescence in situ hybridization. The inversion breakpoint regions were mapped by hybridizing 53 gene markers with polytene chromosomes of An. messeae. The DNA probes were designed based on gene sequences from the annotated An. atroparvus genome. The two nested inversions resulted in five syntenic blocks. Only two small syntenic blocks, which encompass 181 annotated genes in the An. atroparvus genome, changed their position and orientation in the X chromosome. The analysis of the An. atroparvus genome revealed an enrichment of gene ontology terms associated with immune system and mating behavior in the rearranged syntenic blocks. Additionally, the enrichment of DNA transposons was found in sequences homologous to three of the four breakpoint regions. This study demonstrates the successful application of the physical genome mapping approach to identify rearrangements that differentiate species in insects with polytene chromosomes.
  • The probability of chromatin to be at the nuclear lamina has no systematic effect on its transcription level in fruit flies
    Afanasyev, Alexander Y.; Kim, Yoonjin; Tolokh, Igor S.; Sharakhov, Igor V.; Onufriev, Alexey V. (2024-05-06)
    Background: Multiple studies have demonstrated a negative correlation between gene expression and positioning of genes at the nuclear envelope (NE) lined by nuclear lamina, but the exact relationship remains unclear, especially in light of the highly stochastic, transient nature of the gene association with the NE. Results: In this paper, we ask whether there is a causal, systematic, genome-wide relationship between the expression levels of the groups of genes in topologically associating domains (TADs) of Drosophila nuclei and the probabilities of TADs to be found at the NE. To investigate the nature of this possible relationship, we combine a coarse-grained dynamic model of the entire Drosophila nucleus with genome-wide gene expression data; we analyze the TAD averaged transcription levels of genes against the probabilities of individual TADs to be in contact with the NE in the control and lamins-depleted nuclei. Our findings demonstrate that, within the statistical error margin, the stochastic positioning of Drosophila melanogaster TADs at the NE does not, by itself, systematically affect the mean level of gene expression in these TADs, while the expected negative correlation is confirmed. The correlation is weak and disappears completely for TADs not containing lamina-associated domains (LADs) or TADs containing LADs, considered separately. Verifiable hypotheses regarding the underlying mechanism for the presence of the correlation without causality are discussed. These include the possibility that the epigenetic marks and affinity to the NE of a TAD are determined by various non-mutually exclusive mechanisms and remain relatively stable during interphase. Conclusions: At the level of TADs, the probability of chromatin being in contact with the nuclear envelope has no systematic, causal effect on the transcription level in Drosophila. The conclusion is reached by combining model-derived time-evolution of TAD locations within the nucleus with their experimental gene expression levels.
  • RNAi-Mediated Silencing of Laccase 2 in Culex pipiens Pupae via Dehydration and Soaking Results in Multiple Defects in Cuticular Development
    Naumenko, Anastasia N.; Fritz, Megan L. (MDPI, 2024-03-14)
    Mosquitoes transmit a range of pathogens, causing devastating effects on human health. Population genetic control strategies have been developed and successfully used for several mosquito species. The most important step in identifying potential targets for mosquito control is the understanding of gene function. RNA interference (RNAi) is a powerful tool for gene silencing which has been widely used to study gene function in insects via knockdown of expression. The success of RNAi in insects depends on the efficient delivery of dsRNA into the cells, with microinjections being the most commonly used to study mosquito gene function. However, microinjections in the pupal stage lead to significant mortality in Aedes and Culex species, and few studies have performed microinjections in Culicinae pupae. Advanced techniques, such as CRISPR/Cas9 knockout, require establishing individual mosquito lines for each gene studied, and maintaining such lines may be limited by the insect-rearing capacity of a laboratory. Moreover, at times gene knockout during early development (embryo stage) has a deleterious effect on mosquito development, precluding the analysis of gene function in the pupal and adult stages and its potential for mosquito control. There is a need for a simple procedure that can be used for the fast and reliable examination of adult gene function via RNAi knockdown. Here, we focus on the aquatic stages of the mosquito life cycle and suggest a quick and easy assay for screening the functional role of genes in Culex pipiens mosquitoes without using microinjections. By dehydration of early stage pupae and subsequent rehydration in highly concentrated dsRNA, we achieved a moderate knockdown of laccase 2, a gene that turns on in the pupal stage and is responsible for melanization and sclerotization of the adult cuticle.
  • SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic Mice
    Pavan, María Florencia; Bok, Marina; Betanzos San Juan, Rafael; Malito, Juan Pablo; Marcoppido, Gisela Ariana; Franco, Diego Rafael; Militelo, Daniela Ayelen; Schammas, Juan Manuel; Bari, Sara Elizabeth; Stone, William; López, Krisangel; Porier, Danielle LaBrie; Muller, John Anthony; Auguste, A. Jonathan; Yuan, Lijuan; Wigdorovitz, Andrés; Parreño, Viviana Gladys; Ibañez, Lorena Itat (MDPI, 2024-01-25)
    Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.
  • Portable, low-cost samplers for distributed sampling of atmospheric gases
    Hurley, James; Caceres, Alejandra; McGlynn, Deborah; Tovillo, Mary; Pinar, Suzanne; Schuerch, Roger; Onufrieva, Ksenia; Isaacman-VanWertz, Gabriel (2023-10-13)
    Volatile organic compounds (VOCs) contribute to air pollution both directly, as hazardous gases, and through their reactions with common atmospheric oxidants to produce ozone, particulate matter, and other hazardous air pollutants. There are enormous ranges of structures and reaction rates among VOCs, and consequently a need to accurately characterize the spatial and temporal distribution of individual identified compounds. Current VOC measurements are often made with complex, expensive instrumentation that provides high chemical detail, but is limited in its portability and requires high expense (e.g., mobile labs) for spatially resolved measurements. Alternatively, periodic collection of samples on cartridges is inexpensive but demands significant operator interaction that can limit possibilities for time-resolved measurements or distributed measurements across a spatial area. Thus, there is a need for simple, portable devices that can sample with limited operator presence to enable temporally and/or spatially resolved measurements. In this work, we describe new portable and programmable VOC samplers that enable simultaneous collection of samples across a spatially distributed network, validate their reproducibility, and demonstrate their utility. Validation experiments confirmed high precision between samplers as well as the ability of miniature ozone scrubbers to preserve reactive analytes collected on commercially available adsorbent gas sampling cartridges, supporting simultaneous field deployment across multiple locations. In indoor environments, 24-hour integrated samples demonstrate observable day-to-day variability, as well as variability across very short spatial scales (meters). The utility of the samplers was further demonstrated by locating outdoor point sources of analytes through the development of a new mapping approach that employs a group of the portable samplers and back projection techniques to assess a sampling area with higher resolution than stationary sampling. As with all gas sampling, the limits of detection depend on sampling times and the properties of sorbent and analyte. Limit of detection of the analytical system used in this work is on the order of nanograms, corresponding to mixing ratios of 1-10 pptv after one hour of sampling at the programmable flow rate of 50-250 sccm enabled by the developed system. The portable VOC samplers described and validated here provide a simple, low-cost sampling solution for spatially and/or temporally variable measurements of any organic gases that are collectable on currently available sampling media.
  • A biologically accurate model of directional hearing in the parasitoid fly Ormia ochracea
    Mikel-Stites, Max R.; Salcedo, Mary K.; Socha, John J.; Marek, Paul E.; Staples, Anne E. (Cold Spring Harbor Laboratory, 2021-09-17)
    Although most binaural organisms localize sound sources using neurological structures to amplify the sounds they hear, some animals use mechanically coupled hearing organs instead. One of these animals, the parasitoid fly Ormia ochracea, has astoundingly accurate sound localization abilities and can locate objects in the azimuthal plane with a precision of 2°, equal to that of humans. This is accomplished despite an intertympanal distance of only 0.5 mm, which is less than 1/100th of the wavelength of the sound emitted by the crickets that it parasitizes. In 1995, Miles et al. developed a model of hearing mechanics in O. ochracea, which works well for incoming sound angles of less than ±30°, but suffers from reduced accuracy (up to 60% error) at higher angles. Even with this limitation, it has served as the basis for multiple bio-inspired microphone designs for decades. Here, we present critical improvements to the classic O. ochracea hearing model based on information from 3D reconstructions of O. ochracea’s tympana. The 3D images reveal that the tympanal organ has curved lateral faces in addition to the flat front-facing prosternal membranes represented in the Miles model. To mimic these faces, we incorporated spatially-varying spring and damper coefficients that respond asymmetrically to incident sound waves, making a new quasi-two-dimensional (q2D) model. The q2D model has high accuracy (average errors of less than 10%) for the entire range of incoming sound angles. This improved biomechanical hearing model can inform the development of new technologies and may help to play a key role in developing improved hearing aids. Significance Statement: The ability to identify the location of sound sources is critical to organismal survival and for technologies that minimize unwanted background noise, such as directional microphones for hearing aids. Because of its exceptional auditory system, the parasitoid fly Ormia ochracea has served as an important model for binaural hearing and a source of bioinspiration for building tiny directional microphones with outsized sound localization abilities. Here, we performed 3D imaging of the fly’s tympanal organs and used the morphological information to improve the current model for hearing in O. ochracea. This model greatly expands the range of biological accuracy from ±30° to all incoming sound angles, providing a new avenue for studies of binaural hearing and further inspiration for fly-inspired technologies.
  • 3D X-ray analysis of the subterranean burrowing depth and pupal chamber size of Laricobius (Coleoptera: Derodontidae), a specialist predator of Adelges tsugae (Hemiptera: Adelgidae)
    Hillen, Ashleigh P.; Foley, Jeremiah R.; Salcedo, Mary K.; Socha, John J.; Salom, Scott M. (Oxford University Press, 2023-05-01)
    The non-native hemlock woolly adelgid (HWA), Adelges tsugae Annand (Hemiptera: Adelgidae), has caused a significant decline of eastern hemlock, Tsuga canadensis L. (Pinales: Pinaceae), and Carolina hemlock, Tsuga caroliniana Engelmann (Pinales: Pinaceae), in eastern North America. Biological control of HWA has focused on the use of 2 Laricobius spp. (Coleoptera: Derodontidae), natural predators of HWA, which require arboreal and subterranean life phases to complete their development. In its subterranean phase, Laricobius spp. are subject to abiotic factors including soil compaction or soil-applied insecticides used to protect hemlock from HWA. This study used 3D X-ray microcomputed tomography (micro-CT) to identify the depth at which Laricobius spp. burrows during its subterranean lifecycle, characterize pupal chamber volume, and determine whether soil compaction had a significant effect on these variables. The mean burrowing depth in the soil of individuals was 27.0 mm ± 14.8 (SD) and 11.4 mm ± 11.8 (SD) at compaction levels of 0.36 and 0.54 g/ cm3, respectively. The mean pupal chamber volume was 11.15 mm3 ± 2.8 (SD) and 7.65 mm3 ± 3.5 (SD) in soil compacted at 0.36 and 0.54 g/cm3, respectively. These data show that soil compaction influences burrowing depth and pupal chamber size for Laricobius spp.This information will help us better identify the effect of soil-applied insecticide residues on estivating Laricobius spp. and soil-applied insecticide residues in the field. Additionally, these results demonstrate the utility of 3D micro-CT in assessing subterranean insect activity in future studies.
  • The chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus uncovers patterns of genome evolution in mosquitoes
    Ryazansky, Sergei S.; Chen, Chujia; Potters, Mark; Naumenko, Anastasia N.; Lukyanchikova, Varvara; Masri, Reem A.; Brusentsov, Ilya I.; Karagodin, Dmitriy A.; Yurchenko, Andrey A.; dos Anjos, Vitor L.; Haba, Yuki; Rose, Noah H.; Hoffman, Jinna; Guo, Rong; Menna, Theresa; Kelley, Melissa; Ferrill, Emily; Schultz, Karen E.; Qi, Yumin; Sharma, Atashi; Deschamps, Stéphane; Llaca, Victor; Mao, Chunhong; Murphy, Terence D.; Baricheva, Elina M.; Emrich, Scott; Fritz, Megan L.; Benoit, Joshua B.; Sharakhov, Igor V.; McBride, Carolyn S.; Tu, Zhijian; Sharakhova, Maria V. (2024-01-25)
    Background: Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. Methods: In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. Results: We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. Conclusion: The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.
  • Moving past the challenges and misconceptions in urban adaptation research
    Winchell, Kristin M.; Aviles-Rodriguez, Kevin J.; Carlen, Elizabeth J.; Miles, Lindsay S.; Charmantier, Anne; De Leon, Luis F.; Gotanda, Kiyoko M.; Rivkin, L. Ruth; Szulkin, Marta; Verrelli, Brian C. (Wiley, 2022-11-21)
    Although the field of urban evolutionary ecology has recently expanded, much progress has been made in identifying adaptations that arise as a result of selective pressures within these unique environments. However, as studies within urban environments have rapidly increased, researchers have recognized that there are challenges and opportunities in characterizing urban adaptation. Some of these challenges are a consequence of increased direct and indirect human influence, which compounds long-recognized issues with research on adaptive evolution more generally. In this perspective, we discuss several common research challenges to urban adaptation related to (1) methodological approaches, (2) trait–environment relationships and the natural history of organisms, (3) agents and targets of selection, and (4) habitat heterogeneity. Ignoring these challenges may lead to misconceptions and further impede our ability to draw conclusions regarding evolutionary and ecological processes in urban environments. Our goal is to first shed light on the conceptual challenges of conducting urban adaptation research to help avoid the propagation of these misconceptions. We further summarize potential strategies to move forward productively to construct a more comprehensive picture of urban adaptation, and discuss how urban environments also offer unique opportunities and applications for adaptation research.
  • The millipede family Striariidae Bollman, 1893. VIII. Three new genera and four new species of minute millipedes from Oregon and Washington, USA (Diplopoda, Chordeumatida, Striarioidea)
    Shear, William A.; Marek, Paul E. (Magnolia Press, 2023-04-14)
    We describe three new genera and four new species of small, litter-dwelling millipedes from the states of Oregon and Washington, USA: Miniaria ramifera, n. gen., n. sp., Miniaria richarti, n. gen., n. sp., Tigraria oregonensis, n. gen., n. sp., and Kingaria prattensis, n. gen., n. sp. Some of the unusual characters of these species are discussed, including a new type of sensory array on the third tarsus of males and a newly observed mandibular gland.
  • The identity of Neocnemodon calcarata (Loew) (Diptera: Syrphidae), a specialized flower fly predator of woolly apple aphid
    Bergh, J. Christopher; Marek, Paul E.; Short, Brent D.; Skevington, Jeffrey H.; Thompson, F. Christian (2023-03-05)
    The names and identities of the specialized flower fly predators of the Woolly Apple Aphid, Eriosoma lanigerum (Hausmann, 1802) are fixed. These predators, Neocnemodon calcarata (Loew, 1866) and Neocnemodon vitripennis (Meigen, 1822), are important biological control agents as they prey on both arboreal and root colonies of the aphid. A lectotype is designated for Pipiza calcarata Loew, 1866, and type notes of N. calcarata and N. vitripennis are provided.