Effects of Embryonic Thermal Manipulation on Body Performance and Cecum Microbiome in Broiler Chickens Following a Post-Hatch Lipopolysaccharide Challenge

Abstract

Thermal manipulation (TM) during embryogenesis has emerged as a promising strategy to enhance post-hatch performance and improve resilience to environmental and bacterial stress, which offers a potential alternative to reduce the reliance on antibiotic growth promoters (AGPs) in broiler production. This study investigated TM’s ability to modulate broilers’ cecal microbiota and enhance resilience to lipopolysaccharide (LPS)-induced stress. Eggs in the control group (CON) were incubated at 37.8 °C and 56% relative humidity (RH), while TM eggs were exposed to 39 °C and 65% RH for 18 h daily from embryonic days 10–18. Post-hatch, the LPS subgroups (LPS-CON, LPS-TM) received intraperitoneal LPS injections, and body weight (BW) and temperature (BT) were monitored. Cecal samples were collected for microbiome sequencing. Alpha diversity showed no differences (p > 0.05), but beta diversity revealed differences between groups (PERMANOVA, p < 0.05). Firmicutes and Bacteroidota dominated the microbiota at the phylum level. Oscillospirales were enriched in the TM groups (p < 0.001) and Lactobacillales were increased in the LPS-CON group (p < 0.019). LPS reduced BT in the CON group (p < 0.01), but LPS-TM birds bypassed hypothermia. LPS significantly reduced BW (p < 0.001), while TM had no significant effect. These findings demonstrate TM’s enduring influence on gut microbiota and stress resilience, highlighting its potential to reduce antibiotic reliance and mitigate antimicrobial resistance (AMR) in poultry production.

Description

Keywords

Citation

Hundam, S.; Al-Zghoul, M.B.; Ababneh, M.; Alanagreh, L.; Dahadha, R.; Mayyas, M.; Alghizzawi, D.; Mustafa, M.A.; Gerrard, D.E.; Dalloul, R.A. Effects of Embryonic Thermal Manipulation on Body Performance and Cecum Microbiome in Broiler Chickens Following a Post-Hatch Lipopolysaccharide Challenge. Animals 2025, 15, 1149.