Scholarly Works, Center for One Health Research

Permanent URI for this collection


Recent Submissions

Now showing 1 - 7 of 7
  • Hydrogen Peroxide, Povidone-Iodine and Chlorhexidine Fail to Eradicate Staphylococcus aureus Biofilm from Infected Implant Materials
    Parker, Dana M.; Koch, John A.; Gish, Charles G.; Brothers, Kimberly M.; Li, William; Gilbertie, Jessica; Rowe, Sarah E.; Conlon, Brian P.; Byrapogu, Venkata K. C.; Urish, Kenneth L. (MDPI, 2023-05-23)
    Hydrogen peroxide, povidone-iodine, and chlorhexidine are antiseptics that are commonly added to irrigants to either prevent or treat infection. There are little clinical data available that demonstrate efficacy of adding antiseptics to irrigants in the treatment of periprosthetic joint infection after biofilm establishment. The objective of the study was to assess the bactericidal activity of the antiseptics on S. aureus planktonic and biofilm. For planktonic irrigation, S. aureus was exposed to different concentrations of antiseptics. S. aureus biofilm was developed by submerging a Kirschner wire into normalized bacteria and allowing it to grow for forty-eight hours. The Kirschner wire was then treated with irrigation solutions and plated for CFU analysis. Hydrogen peroxide, povidone-iodine, and chlorhexidine were bactericidal against planktonic bacteria with over a 3 log reduction (p < 0.0001). Unlike cefazolin, the antiseptics were not bactericidal (less than 3 log reduction) against biofilm bacteria but did have a statistical reduction in biofilm as compared to the initial time point (p < 0.0001). As compared to cefazolin treatment alone, the addition of hydrogen peroxide or povidone-iodine to cefazolin treatment only additionally reduced the biofilm burden by less than 1 log. The antiseptics demonstrated bactericidal properties with planktonic S. aureus; however, when used to irrigate S. aureus biofilms, these antiseptics were unable to decrease biofilm mass below a 3 log reduction, suggesting that S. aureus biofilm has a tolerance to antiseptics. This information should be considered when considering antibiotic tolerance in established S. aureus biofilm treatment.
  • DNA Metabarcoding-based Evaluation of the Diet of Big Brown Bats (Eptesicus fuscus) in the Mid-Atlantic Region
    Deeley, Sabrina; Kang, Lin; Michalak, Pawel; Hallerman, Eric M.; Ford, W. Mark (Eagle Hill Institute, 2022-12)
    High-throughput DNA sequencing can generate large genetic datasets in a cost-effective manner. Although the diet of Eptesicus fuscus (Big Brown Bat) has been studied widely in natural and rural systems using visual identification of prey items in feces, our aim was to more completely assess diet using a metabarcoding approach across a wide urban-natural landscape gradient in the mid-Atlantic region. Concordant with our expectations and previous Big Brown Bat diet studies from visual identification, we observed a high abundance of Coleoptera (beetles) relative to other insect orders. Although a possible improvement over visual techniques for studying food habits, we suggest caution in interpreting metabarcoding results in diet studies. We noted observations of environmental or contaminant taxa within these data, and designed a stringent filtering method that we used to eliminate these taxa, but that also removed previously documented prey taxa from our dataset.
  • The Paratuberculosis Paradigm Examined: A Review of Host Genetic Resistance and Innate Immune Fitness in Mycobacterium avium subsp. Paratuberculosis Infection
    Kravitz, Amanda; Pelzer, Kevin; Sriranganathan, Nammalwar (Frontiers, 2021-08-13)
    Paratuberculosis, or Johne’s Disease (JD) is a debilitating chronic enteritis mainly affecting ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). This organism causes worldwide economic losses to the livestock industry, and is of public health importance due to the potential zoonotic risk between MAP and Crohn’s disease (CD) in humans. Without economical treatments, or a vaccine capable of preventing infection without causing cross-reactions with bovine tuberculosis, test-and-cullmethods for disease control are imperative. Unfortunately, difficulties in diagnostics and long subclinical stage hinder adequate control and is further complicated by variation in MAP exposure outcome. Interestingly, the majority of infections result in asymptomatic presentation and never progress to clinical disease. One contributing factor is host genetics, where polymorphisms in innate immune genes have been found to influence resistance and susceptibility to disease. Candidate genes identified across studies overlap with those found in CD and tuberculosis including; Solute carrier family 11 member 1 gene (SLC11A1), Nucleotide-binding-oligomerization domain containing gene 2 (NOD2), Major histocompatibility complex type II (MHC-II), and Toll-like receptor (TLR) genes. This review will highlight evidence supporting the vital role of these genes in MAP infection outcome, associated challenges, and implications for the future of JD research.
  • The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples
    Caudill, Mitchell T.; Brayton, Kelly A. (MDPI, 2022-03-12)
    With the advent of cheaper, high-throughput sequencing technologies, the ability to survey biodiversity in previously unexplored niches and geographies has expanded massively. Within Anaplasma, a genus containing several intra-hematopoietic pathogens of medical and economic importance, at least 25 new species have been proposed since the last formal taxonomic organization. Given the obligate intracellular nature of these bacteria, none of these proposed species have been able to attain formal standing in the nomenclature per the International Code of Nomenclature of Prokaryotes rules. Many novel species’ proposals use sequence data obtained from targeted or metagenomic PCR studies of only a few genes, most commonly the 16S rRNA gene. We examined the utility of the 16S rRNA gene sequence for discriminating Anaplasma samples to the species level. We find that while the genetic diversity of the genus Anaplasma appears greater than appreciated in the last organization of the genus, caution must be used when attempting to resolve to a species descriptor from the 16S rRNA gene alone. Specifically, genomically distinct species have similar 16S rRNA gene sequences, especially when only partial amplicons of the 16S rRNA are used. Furthermore, we provide key bases that allow classification of the formally named species of Anaplasma.
  • A glutamate concentration-biased allosteric modulator potentiates NMDA-induced ion influx in neurons
    Costa, Blaise M.; Kwapisz, Lina Cortes; Mehrkens, Brittney; Bledsoe, Douglas N.; Vacca, Bryanna N.; Johnston, Tullia V.; Razzaq, Rehan; Manickam, Dhanasekaran; Klein, Bradley G. (Wiley, 2021-10-01)
    Precisely controlled synaptic glutamate concentration is essential for the normal function of the N-methyl D-aspartate (NMDA) receptors. Atypical fluctuations in synaptic glutamate homeostasis lead to aberrant NMDA receptor activity that results in the pathogenesis of neurological and psychiatric disorders. Therefore, glutamate concentration-dependent NMDA receptor modulators would be clinically useful agents with fewer on-target adverse effects. In the present study, we have characterized a novel compound (CNS4) that potentiates NMDA receptor currents based on glutamate concentration. This compound alters glutamate potency and exhibits no voltage-dependent effect. Patch-clamp electrophysiology recordings confirmed agonist concentration-dependent changes in maximum inducible currents. Dynamic Ca2+ and Na+ imaging assays using rat brain cortical, striatal and cerebellar neurons revealed CNS4 potentiated ion influx through native NMDA receptor activity. Overall, CNS4 is novel in chemical structure, mechanism of action and agonist concentration-biased allosteric modulatory effect. This compound or its future analogs will serve as useful candidates to develop drug-like compounds for the treatment of treatment-resistant schizophrenia and major depression disorders associated with hypoglutamatergic neurotransmission.
  • Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus Vaccine
    Porier, Danielle L.; Wilson, Sarah N.; Auguste, Dawn I.; Leber, Andrew; Coutermarsh-Ott, Sheryl; Allen, Irving C.; Caswell, Clayton C.; Budnick, James A.; Bassaganya-Riera, Josep; Hontecillas, Raquel; Weger-Lucarelli, James; Weaver, Scott C.; Auguste, Albert J. (MDPI, 2021-10-07)
    Vaccination remains critical for viral disease outbreak prevention and control, but conventional vaccine development typically involves trade-offs between safety and immunogenicity. We used a recently discovered insect-specific flavivirus as a vector in order to develop an exceptionally safe, flavivirus vaccine candidate with single-dose efficacy. To evaluate the safety and efficacy of this platform, we created a chimeric Zika virus (ZIKV) vaccine candidate, designated Aripo/Zika virus (ARPV/ZIKV). ZIKV has caused immense economic and public health impacts throughout the Americas and remains a significant public health threat. ARPV/ZIKV vaccination showed exceptional safety due to ARPV/ZIKV’s inherent vertebrate host-restriction. ARPV/ZIKV showed no evidence of replication or translation in vitro and showed no hematological, histological or pathogenic effects in vivo. A single-dose immunization with ARPV/ZIKV induced rapid and robust neutralizing antibody and cellular responses, which offered complete protection against ZIKV-induced morbidity, mortality and in utero transmission in immune-competent and -compromised murine models. Splenocytes derived from vaccinated mice demonstrated significant CD4+ and CD8+ responses and significant cytokine production post-antigen exposure. Altogether, our results further support that chimeric insect-specific flaviviruses are a promising strategy to restrict flavivirus emergence via vaccine development.
  • Essential Gene(s) Targeted by Peptide Nucleic Acids Kills Mycobacterium smegmatis in Culture and in Infected Macrophages
    Islam, Md. Ariful; Khatun, Mst. Minara; Sriranganathan, Nammalwar; Boyle, Stephen M. (Scientific Research Publishing, 2021-04-19)
    Background: Antisense peptide nucleic acids (PNAs) exhibit growth inhibitory effects on bacteria by inhibiting the expression of essential genes and could be promising therapeutic agents for treating bacterial infections. A study was carried out to determine the efficacy of several antisense PNAs in inhibiting extracellular and intracellular growth of Mycobacterium smegmatis. Methods : Six PNAs obtained from a commercial supplier were tested to evaluate the inhibitory effect on bacterial growth by inhibiting the expression of the following essential genes: inhA (a fatty acid elongase), rpsL (ribosomal S12 protein), gyrA (DNA gyrase), pncA (pyrazinamidase), polA (DNA polymerase I) and rpoC (RNA polymerase β subunit) of M. smegmatis . Each PNA was tested at 20 μM, 10 μM, 5 μM and 2.5 μM concentrations to determine whether they caused a dose dependent killing of M. smegmatis cultured in Middlebrook 7H9 broth or in a J774A.1 murine macrophage cell line. Results : In Middlebrook broth, the strong growth inhibitory effect against M. smegmatis was observed by PNAs targeting the inhA and rpsL genes at all four concentrations. The PNAs targeting the pncA, polA and rpoC genes were found to exhibit strong growth inhibition against M. smegmatis but only at 20 μM concentration. No growth inhibition of M. smegmatis was seen in pure culture when treated with PNAs targeting gyrA and a mismatch PNA targeting dnaG (DNA primase). All six PNAs showed killing of M. smegmatis in J774A.1 macrophage cell line that were statistically significant (p < 0.05). Conclusion: It may be concluded from this study that PNAs could be potential therapeutics for mycobacterial infections.