Scholarly Works, Center for One Health Research
Permanent URI for this collection
Browse
Recent Submissions
- Evolution at Spike protein position 519 in SARS-CoV-2 facilitated adaptation to humansCereghino, C.; Michalak, K.; DiGiuseppe, S.; Yu, D.; Faraji, A.; Sharp, A.K.; Brown, Anne M.; Kang, L.; Weger-Lucarelli, James; Michalak, P. (Springer Nature, 2024)As the COVID-19 pandemic enters its fourth year, the pursuit of identifying a progenitor virus to SARSCoV- 2 and understanding the mechanism of its emergence persists, albeit against the backdrop of intensified efforts to monitor the ongoing evolution of the virus and the influx of new mutations. Surprisingly, few residues hypothesized to be essential forSARS-CoV-2 emergence and adaptation to humans have been validated experimentally, despite the importance that these mutations could contribute to the development of effective antivirals. To remedy this,we searched for genomic regions in the SARS-CoV-2 genome that show evidence of past selection around residues unique to SARSCoV- 2 compared with closely related coronaviruses. In doing so, we identified a residue at position 519 in Spike within the receptor binding domain that holds a static histidine in human-derived SARSCoV- 2 sequences but an asparagine in SARS-related coronaviruses from bats and pangolins. In experimental validation, the SARS-CoV-2 Spike protein mutant carrying the putatively ancestral H519N substitution showed reduced replication in human lung cells, suggesting that the histidine residue contributes to viral fitness in the human host. Structural analyses revealed a potential role of Spike residue 519 in mediating conformational transitions necessary for Spike prior to binding with ACE2. Pseudotyped viruses bearing the putatively ancestral N519 also demonstrated significantly reduced infectivity in cells expressing the human ACE2 receptor compared to H519. ELISA data corroborated that H519 enhances Spike binding affinity to the human ACE2 receptor compared to the putatively ancestral N519. Collectively, these findings suggest that the evolutionary transition at position 519 of the Spike protein played a critical role inSARS-CoV-2 emergence and adaptation to the human host. Additionally, this residue presents as a potential drug target for designing small molecule inhibitors tailored to this site.
- Hydrogen Peroxide, Povidone-Iodine and Chlorhexidine Fail to Eradicate Staphylococcus aureus Biofilm from Infected Implant MaterialsParker, Dana M.; Koch, John A.; Gish, Charles G.; Brothers, Kimberly M.; Li, William; Gilbertie, Jessica; Rowe, Sarah E.; Conlon, Brian P.; Byrapogu, Venkata K. C.; Urish, Kenneth L. (MDPI, 2023-05-23)Hydrogen peroxide, povidone-iodine, and chlorhexidine are antiseptics that are commonly added to irrigants to either prevent or treat infection. There are little clinical data available that demonstrate efficacy of adding antiseptics to irrigants in the treatment of periprosthetic joint infection after biofilm establishment. The objective of the study was to assess the bactericidal activity of the antiseptics on S. aureus planktonic and biofilm. For planktonic irrigation, S. aureus was exposed to different concentrations of antiseptics. S. aureus biofilm was developed by submerging a Kirschner wire into normalized bacteria and allowing it to grow for forty-eight hours. The Kirschner wire was then treated with irrigation solutions and plated for CFU analysis. Hydrogen peroxide, povidone-iodine, and chlorhexidine were bactericidal against planktonic bacteria with over a 3 log reduction (p < 0.0001). Unlike cefazolin, the antiseptics were not bactericidal (less than 3 log reduction) against biofilm bacteria but did have a statistical reduction in biofilm as compared to the initial time point (p < 0.0001). As compared to cefazolin treatment alone, the addition of hydrogen peroxide or povidone-iodine to cefazolin treatment only additionally reduced the biofilm burden by less than 1 log. The antiseptics demonstrated bactericidal properties with planktonic S. aureus; however, when used to irrigate S. aureus biofilms, these antiseptics were unable to decrease biofilm mass below a 3 log reduction, suggesting that S. aureus biofilm has a tolerance to antiseptics. This information should be considered when considering antibiotic tolerance in established S. aureus biofilm treatment.
- DNA Metabarcoding-based Evaluation of the Diet of Big Brown Bats (Eptesicus fuscus) in the Mid-Atlantic RegionDeeley, Sabrina; Kang, Lin; Michalak, Pawel; Hallerman, Eric M.; Ford, W. Mark (Eagle Hill Institute, 2022-12)High-throughput DNA sequencing can generate large genetic datasets in a cost-effective manner. Although the diet of Eptesicus fuscus (Big Brown Bat) has been studied widely in natural and rural systems using visual identification of prey items in feces, our aim was to more completely assess diet using a metabarcoding approach across a wide urban-natural landscape gradient in the mid-Atlantic region. Concordant with our expectations and previous Big Brown Bat diet studies from visual identification, we observed a high abundance of Coleoptera (beetles) relative to other insect orders. Although a possible improvement over visual techniques for studying food habits, we suggest caution in interpreting metabarcoding results in diet studies. We noted observations of environmental or contaminant taxa within these data, and designed a stringent filtering method that we used to eliminate these taxa, but that also removed previously documented prey taxa from our dataset.
- The Paratuberculosis Paradigm Examined: A Review of Host Genetic Resistance and Innate Immune Fitness in Mycobacterium avium subsp. Paratuberculosis InfectionKravitz, Amanda; Pelzer, Kevin; Sriranganathan, Nammalwar (Frontiers, 2021-08-13)Paratuberculosis, or Johne’s Disease (JD) is a debilitating chronic enteritis mainly affecting ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). This organism causes worldwide economic losses to the livestock industry, and is of public health importance due to the potential zoonotic risk between MAP and Crohn’s disease (CD) in humans. Without economical treatments, or a vaccine capable of preventing infection without causing cross-reactions with bovine tuberculosis, test-and-cullmethods for disease control are imperative. Unfortunately, difficulties in diagnostics and long subclinical stage hinder adequate control and is further complicated by variation in MAP exposure outcome. Interestingly, the majority of infections result in asymptomatic presentation and never progress to clinical disease. One contributing factor is host genetics, where polymorphisms in innate immune genes have been found to influence resistance and susceptibility to disease. Candidate genes identified across studies overlap with those found in CD and tuberculosis including; Solute carrier family 11 member 1 gene (SLC11A1), Nucleotide-binding-oligomerization domain containing gene 2 (NOD2), Major histocompatibility complex type II (MHC-II), and Toll-like receptor (TLR) genes. This review will highlight evidence supporting the vital role of these genes in MAP infection outcome, associated challenges, and implications for the future of JD research.
- The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma SamplesCaudill, Mitchell T.; Brayton, Kelly A. (MDPI, 2022-03-12)With the advent of cheaper, high-throughput sequencing technologies, the ability to survey biodiversity in previously unexplored niches and geographies has expanded massively. Within Anaplasma, a genus containing several intra-hematopoietic pathogens of medical and economic importance, at least 25 new species have been proposed since the last formal taxonomic organization. Given the obligate intracellular nature of these bacteria, none of these proposed species have been able to attain formal standing in the nomenclature per the International Code of Nomenclature of Prokaryotes rules. Many novel species’ proposals use sequence data obtained from targeted or metagenomic PCR studies of only a few genes, most commonly the 16S rRNA gene. We examined the utility of the 16S rRNA gene sequence for discriminating Anaplasma samples to the species level. We find that while the genetic diversity of the genus Anaplasma appears greater than appreciated in the last organization of the genus, caution must be used when attempting to resolve to a species descriptor from the 16S rRNA gene alone. Specifically, genomically distinct species have similar 16S rRNA gene sequences, especially when only partial amplicons of the 16S rRNA are used. Furthermore, we provide key bases that allow classification of the formally named species of Anaplasma.
- A glutamate concentration-biased allosteric modulator potentiates NMDA-induced ion influx in neuronsCosta, Blaise M.; Kwapisz, Lina Cortes; Mehrkens, Brittney; Bledsoe, Douglas N.; Vacca, Bryanna N.; Johnston, Tullia V.; Razzaq, Rehan; Manickam, Dhanasekaran; Klein, Bradley G. (Wiley, 2021-10-01)Precisely controlled synaptic glutamate concentration is essential for the normal function of the N-methyl D-aspartate (NMDA) receptors. Atypical fluctuations in synaptic glutamate homeostasis lead to aberrant NMDA receptor activity that results in the pathogenesis of neurological and psychiatric disorders. Therefore, glutamate concentration-dependent NMDA receptor modulators would be clinically useful agents with fewer on-target adverse effects. In the present study, we have characterized a novel compound (CNS4) that potentiates NMDA receptor currents based on glutamate concentration. This compound alters glutamate potency and exhibits no voltage-dependent effect. Patch-clamp electrophysiology recordings confirmed agonist concentration-dependent changes in maximum inducible currents. Dynamic Ca2+ and Na+ imaging assays using rat brain cortical, striatal and cerebellar neurons revealed CNS4 potentiated ion influx through native NMDA receptor activity. Overall, CNS4 is novel in chemical structure, mechanism of action and agonist concentration-biased allosteric modulatory effect. This compound or its future analogs will serve as useful candidates to develop drug-like compounds for the treatment of treatment-resistant schizophrenia and major depression disorders associated with hypoglutamatergic neurotransmission.
- Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus VaccinePorier, Danielle L.; Wilson, Sarah N.; Auguste, Dawn I.; Leber, Andrew; Coutermarsh-Ott, Sheryl; Allen, Irving C.; Caswell, Clayton C.; Budnick, James A.; Bassaganya-Riera, Josep; Hontecillas, Raquel; Weger-Lucarelli, James; Weaver, Scott C.; Auguste, A. Jonathan (MDPI, 2021-10-07)Vaccination remains critical for viral disease outbreak prevention and control, but conventional vaccine development typically involves trade-offs between safety and immunogenicity. We used a recently discovered insect-specific flavivirus as a vector in order to develop an exceptionally safe, flavivirus vaccine candidate with single-dose efficacy. To evaluate the safety and efficacy of this platform, we created a chimeric Zika virus (ZIKV) vaccine candidate, designated Aripo/Zika virus (ARPV/ZIKV). ZIKV has caused immense economic and public health impacts throughout the Americas and remains a significant public health threat. ARPV/ZIKV vaccination showed exceptional safety due to ARPV/ZIKV’s inherent vertebrate host-restriction. ARPV/ZIKV showed no evidence of replication or translation in vitro and showed no hematological, histological or pathogenic effects in vivo. A single-dose immunization with ARPV/ZIKV induced rapid and robust neutralizing antibody and cellular responses, which offered complete protection against ZIKV-induced morbidity, mortality and in utero transmission in immune-competent and -compromised murine models. Splenocytes derived from vaccinated mice demonstrated significant CD4+ and CD8+ responses and significant cytokine production post-antigen exposure. Altogether, our results further support that chimeric insect-specific flaviviruses are a promising strategy to restrict flavivirus emergence via vaccine development.
- Essential Gene(s) Targeted by Peptide Nucleic Acids Kills Mycobacterium smegmatis in Culture and in Infected MacrophagesIslam, Md. Ariful; Khatun, Mst. Minara; Sriranganathan, Nammalwar; Boyle, Stephen M. (Scientific Research Publishing, 2021-04-19)Background: Antisense peptide nucleic acids (PNAs) exhibit growth inhibitory effects on bacteria by inhibiting the expression of essential genes and could be promising therapeutic agents for treating bacterial infections. A study was carried out to determine the efficacy of several antisense PNAs in inhibiting extracellular and intracellular growth of Mycobacterium smegmatis. Methods : Six PNAs obtained from a commercial supplier were tested to evaluate the inhibitory effect on bacterial growth by inhibiting the expression of the following essential genes: inhA (a fatty acid elongase), rpsL (ribosomal S12 protein), gyrA (DNA gyrase), pncA (pyrazinamidase), polA (DNA polymerase I) and rpoC (RNA polymerase β subunit) of M. smegmatis . Each PNA was tested at 20 μM, 10 μM, 5 μM and 2.5 μM concentrations to determine whether they caused a dose dependent killing of M. smegmatis cultured in Middlebrook 7H9 broth or in a J774A.1 murine macrophage cell line. Results : In Middlebrook broth, the strong growth inhibitory effect against M. smegmatis was observed by PNAs targeting the inhA and rpsL genes at all four concentrations. The PNAs targeting the pncA, polA and rpoC genes were found to exhibit strong growth inhibition against M. smegmatis but only at 20 μM concentration. No growth inhibition of M. smegmatis was seen in pure culture when treated with PNAs targeting gyrA and a mismatch PNA targeting dnaG (DNA primase). All six PNAs showed killing of M. smegmatis in J774A.1 macrophage cell line that were statistically significant (p < 0.05). Conclusion: It may be concluded from this study that PNAs could be potential therapeutics for mycobacterial infections.
- The Komodo dragon (Varanus komodoensis) genome and identification of innate immunity genes and clustersvan Hoek, Monique L.; Prickett, M. D.; Settlage, Robert E.; Kang, Lin; Michalak, Pawel; Vliet, Kent A.; Bishop, Barney M. (2019-08-30)Background We report the sequencing, assembly and analysis of the genome of the Komodo dragon (Varanus komodoensis), the largest extant lizard, with a focus on antimicrobial host-defense peptides. The Komodo dragon diet includes carrion, and a complex milieu of bacteria, including potentially pathogenic strains, has been detected in the saliva of wild dragons. They appear to be unaffected, suggesting that dragons have robust defenses against infection. While little information is available regarding the molecular biology of reptile immunity, it is believed that innate immunity, which employs antimicrobial host-defense peptides including defensins and cathelicidins, plays a more prominent role in reptile immunity than it does in mammals. . Results High molecular weight genomic DNA was extracted from Komodo dragon blood cells. Subsequent sequencing and assembly of the genome from the collected DNA yielded a genome size of 1.6 Gb with 45x coverage, and the identification of 17,213 predicted genes. Through further analyses of the genome, we identified genes and gene-clusters corresponding to antimicrobial host-defense peptide genes. Multiple β-defensin-related gene clusters were identified, as well as a cluster of potential Komodo dragon ovodefensin genes located in close proximity to a cluster of Komodo dragon β-defensin genes. In addition to these defensins, multiple cathelicidin-like genes were also identified in the genome. Overall, 66 β-defensin genes, six ovodefensin genes and three cathelicidin genes were identified in the Komodo dragon genome. Conclusions Genes with important roles in host-defense and innate immunity were identified in this newly sequenced Komodo dragon genome, suggesting that these organisms have a robust innate immune system. Specifically, multiple Komodo antimicrobial peptide genes were identified. Importantly, many of the antimicrobial peptide genes were found in gene clusters. We found that these innate immunity genes are conserved among reptiles, and the organization is similar to that seen in other avian and reptilian species. Having the genome of this important squamate will allow researchers to learn more about reptilian gene families and will be a valuable resource for researchers studying the evolution and biology of the endangered Komodo dragon.
- Genomic divergence and adaptive convergence in Drosophila simulans from Evolution Canyon, IsraelKang, Lin; Rashkovetsky, Eugenia; Michalak, Katarzyna; Garner, Harold R.; Mahaney, James E.; Rzigalinski, Beverly A.; Korol, Abraham B.; Nevo, Eviatar; Michalak, Pawel (2019-06-11)Biodiversity refugia formed by unique features of the Mediterranean arid landscape, such as the dramatic ecological contrast of "Evolution Canyon," provide a natural laboratory in which local adaptations to divergent microclimate conditions can be investigated. Significant insights have been provided by studies of Drosophila melanogaster diversifying along the thermal gradient in Evolution Canyon, but a comparative framework to survey adaptive convergence across sister species at the site has been lacking. To fill this void, we present an analysis of genomic polymorphism and evolutionary divergence of Drosophila simulans, a close relative of Drosophila melanogaster with which it co-occurs on both slopes of the canyon. Our results show even deeper interslope divergence in D. simulans than in D. melanogaster, with extensive signatures of selective sweeps present in flies from both slopes but enhanced in the population from the hotter and drier south-facing slope. Interslope divergence was enriched for genes related to electrochemical balance and transmembrane transport, likely in response to increased selection for dehydration resistance on the hotter slope. Both species shared genomic regions that underwent major selective sweeps, but the overall level of adaptive convergence was low, demonstrating no shortage of alternative genomic solutions to cope with the challenges of the microclimate contrast. Mobile elements were a major source of genetic polymorphism and divergence, affecting all parts of the genome, including coding sequences of mating behavior-related genes.
- CAGm: A repository of germline microsatellite variations in the 1000 genomes projectKinney, N.; Titus-Glover, K.; Wren, J.D.; Varghese, Ronnie; Michalak, Pawel; Liao, H.; Anandakrishnan, Ramu; Pulenthiran, A.; Kang, L.; Garner, Harold R. (Oxford University Press, 2019-01-08)The human genome harbors an abundance of repetitive DNA; however, its function continues to be debated. Microsatellites-a class of short tandem repeat-are established as an important source of genetic variation. Array length variants are common among microsatellites and affect gene expression; but, efforts to understand the role and diversity of microsatellite variation has been hampered by several challenges. Without adequate depth, both long-read and short-read sequencing may not detect the variants present in a sample; additionally, large sample sizes are needed to reveal the degree of population-level polymorphism. To address these challenges we present the Comparative Analysis of Germline Microsatellites (CAGm): A database of germline microsatellites from 2529 individuals in the 1000 genomes project. A key novelty of CAGm is the ability to aggregate microsatellite variation by population, ethnicity (super population) and gender. The database provides advanced searching for microsatellites embedded in genes and functional elements. All data can be downloaded as Microsoft Excel spreadsheets. Two use-case scenarios are presented to demonstrate its utility: A mononucleotide (A) microsatellite at the BAT-26 locus and a dinucleotide (CA) microsatellite in the coding region of FGFRL1. CAGm is freely available at http://www.cagmdb.org/.
- Regulation of gene expression and RNA editing in Drosophila adapting to divergent microclimatesYablonovitch, Arielle L.; Fu, Jeremy; Li, Kexin; Mahato, Simpla; Kang, Lin; Rashkovetsky, Eugenia; Korol, Abraham B.; Tang, Hua; Michalak, Pawel; Zelhof, Andrew C.; Nevo, Eviatar; Li, Jin Billy (Springer Nature, 2017-11-17)Determining the mechanisms by which a species adapts to its environment is a key endeavor in the study of evolution. In particular, relatively little is known about how transcriptional processes are fine-tuned to adjust to different environmental conditions. Here we study Drosophila melanogaster from 'Evolution Canyon' in Israel, which consists of two opposing slopes with divergent microclimates. We identify several hundred differentially expressed genes and dozens of differentially edited sites between flies from each slope, correlate these changes with genetic differences, and use CRISPR mutagenesis to validate that an intronic SNP in prominin regulates its editing levels. We also demonstrate that while temperature affects editing levels at more sites than genetic differences, genetically regulated sites tend to be less affected by temperature. This work shows the extent to which gene expression and RNA editing differ between flies from different microclimates, and provides insights into the regulation responsible for these differences.
- Unique divergence of the breast cancer 2 (BRCA2) gene in NeanderthalsMichalak, Pawel; Kang, Lin (2018-11-03)Unique divergence of the BRCA2, a tumor suppressor gene, in Neanderthals relative to other primates, including modern humans, is highlighted. This divergence with potentially pathogenic consequences raises a question about cancer susceptibility in the archaic species that was replaced by modern humans about 40,000 years ago.
- The role of lipooligosaccharide phosphorylcholine in colonization and pathogenesis of Histophilus somni in cattleElswaifi, Shaadi F.; Scarratt, W. Kent; Inzana, Thomas J. (Biomed Central, 2012-06-07)Histophilus somni is a Gram-negative bacterium and member of the Pasteurellaceae that is responsible for respiratory disease and other systemic infections in cattle. One of the bacterium’s virulence factors is antigenic phase variation of its lipooligosaccharide (LOS). LOS antigenic variation may occur through variation in composition or structure of glycoses or their substitutions, such as phosphorylcholine (ChoP). However, the role of ChoP in the pathogenesis of H. somni disease has not been established. In Haemophilus influenzae ChoP on the LOS binds to platelet activating factor on epithelial cells, promoting bacterial colonization of the host upper respiratory tract. However, ChoP is not expressed in the blood as it also binds C-reactive protein, resulting in complement activation and killing of the bacteria. In order to simulate the susceptibility of calves with suppressed immunity due to stress or previous infection, calves were challenged with bovine herpes virus-1 or dexamethazone 3 days prior to challenge with H. somni. Following challenge, expression of ChoP on the LOS of 2 different H. somni strains was associated with colonization of the upper respiratory tract. In contrast, lack of ChoP expression was associated with bacteria recovered from systemic sites. Histopathology of cardiac tissue from myocarditis revealed lesions containing bacterial clusters that appeared similar to a biofilm. Furthermore, some respiratory cultures contained substantial numbers of Pasteurella multocida, which were not present on preculture screens. Subsequent biofilm experiments have shown that H. somni and P. multocida grow equally well together in a biofilm, suggesting a commensal relationship may exist between the two species. Our results also showed that ChoP contributed to, but was not required for, adhesion to respiratory epithelial cells. In conclusion, expression of ChoP on H. somni LOS contributed to colonization of the bacteria to the host upper respiratory tract, but phase variable loss of ChoP expression may help the bacteria survive systemically.
- A History of the Development of Brucella VaccinesAvila-Calderon, Eric Daniel; Lopez-Merino, Ahidé; Sriranganathan, Nammalwar; Boyle, Stephen M.; Contreras-Rodriguez, Araceli (Hindawi, 2013)Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge.
- Molecular targets for rapid identification of Brucella sppRatushna, Vladyslava G.; Sturgill, David M.; Ramamoorthy, Sheela; Reichow, Sherry A.; He, Yongqun; Lathigra, Raju; Sriranganathan, Nammalwar; Halling, Shirley M.; Boyle, Stephen M.; Gibas, Cynthia J. (2006-02-22)Background Brucella is an intracellular pathogen capable of infecting animals and humans. There are six recognized species of Brucella that differ in their host preference. The genomes of the three Brucella species have been recently sequenced. Comparison of the three revealed over 98% sequence similarity at the protein level and enabled computational identification of common and differentiating genes. We validated these computational predictions and examined the expression patterns of the putative unique and differentiating genes, using genomic and reverse transcription PCR. We then screened a set of differentiating genes against classical Brucella biovars and showed the applicability of these regions in the design of diagnostic tests. Results We have identified and tested set of molecular targets that are associated in unique patterns with each of the sequenced Brucella spp. A comprehensive comparison was made among the published genome sequences of B. abortus, B. melitensis and B. suis. The comparison confirmed published differences between the three Brucella genomes, and identified subsets of features that were predicted to be of interest in a functional comparison of B. melitensis and B. suis to B. abortus. Differentiating sequence regions from B. abortus, B. melitensis and B. suis were used to develop PCR primers to test for the existence and in vitro transcription of these genes in these species. Only B. suis is found to have a significant number of unique genes, but combinations of genes and regions that exist in only two out of three genomes and are therefore useful for diagnostics were identified and confirmed. Conclusion Although not all of the differentiating genes identified were transcribed under steady state conditions, a group of genes sufficient to discriminate unambiguously between B. suis, B. melitensis, and B. abortus was identified. We present an overview of these genomic differences and the use of these features to discriminate among a number of Brucella biovars.
- Incorporation of membrane-bound, mammalian-derived immunomodulatory proteins into influenza whole virus vaccines boosts immunogenicity and protection against lethal challengeHerbert, Andrew S.; Heffron, C. Lynn; Sundick, Roy; Roberts, Paul C. (2009-04-24)Background Influenza epidemics continue to cause morbidity and mortality within the human population despite widespread vaccination efforts. This, along with the ominous threat of an avian influenza pandemic (H5N1), demonstrates the need for a much improved, more sophisticated influenza vaccine. We have developed an in vitro model system for producing a membrane-bound Cytokine-bearing Influenza Vaccine (CYT-IVAC). Numerous cytokines are involved in directing both innate and adaptive immunity and it is our goal to utilize the properties of individual cytokines and other immunomodulatory proteins to create a more immunogenic vaccine. Results We have evaluated the immunogenicity of inactivated cytokine-bearing influenza vaccines using a mouse model of lethal influenza virus challenge. CYT-IVACs were produced by stably transfecting MDCK cell lines with mouse-derived cytokines (GM-CSF, IL-2 and IL-4) fused to the membrane-anchoring domain of the viral hemagglutinin. Influenza virus replication in these cell lines resulted in the uptake of the bioactive membrane-bound cytokines during virus budding and release. In vivo efficacy studies revealed that a single low dose of IL-2 or IL-4-bearing CYT-IVAC is superior at providing protection against lethal influenza challenge in a mouse model and provides a more balanced Th1/Th2 humoral immune response, similar to live virus infections. Conclusion We have validated the protective efficacy of CYT-IVACs in a mammalian model of influenza virus infection. This technology has broad applications in current influenza virus vaccine development and may prove particularly useful in boosting immune responses in the elderly, where current vaccines are minimally effective.
- Enzymatic, immunological and phylogenetic characterization of Brucella suis ureaseContreras-Rodriguez, Araceli; Quiroz-Limon, Jose; Martins, Ana M.; Peralta, Humberto; Avila-Calderon, Eric Daniel; Sriranganathan, Nammalwar; Boyle, Stephen M.; Lopez-Merino, Ahidé (2008-07-19)Background The sequenced genomes of the Brucella spp. have two urease operons, ure-1 and ure-2, but there is evidence that only one is responsible for encoding an active urease. The present work describes the purification and the enzymatic and phylogenomic characterization of urease from Brucella suis strain 1330. Additionally, the urease reactivity of sera from patients diagnosed with brucellosis was examined. Results Urease encoded by the ure-1 operon of Brucella suis strain 1330 was purified to homogeneity using ion exchange and hydrophobic interaction chromatographies. The urease was purified 51-fold with a recovery of 12% of the enzyme activity and 0.24% of the total protein. The enzyme had an isoelectric point of 5, and showed optimal activity at pH 7.0 and 28-35°C. The purified enzyme exhibited a Michaelis-Menten saturation kinetics with a Km of 5.60 ± 0.69 mM. Hydroxyurea and thiourea are competitive inhibitors of the enzyme with Ki of 1.04 ± 0.31 mM and 26.12 ± 2.30 mM, respectively. Acetohydroxamic acid also inhibits the enzyme in a competitive way. The molecular weight estimated for the native enzyme was between 130-135 kDa by gel filtration chromatography and 157 ± 7 kDa using 5-10% polyacrylamide gradient non-denaturing gel. Only three subunits in SDS-PAGE were identified: two small subunits of 14,000 Da and 15,500 Da, and a major subunit of 66,000 Da. The amino terminal sequence of the purified large subunit corresponded to the predicted amino acid sequence encoded by ureC1. The UreC1 subunit was recognized by sera from patients with acute and chronic brucellosis. By phylogenetic and cluster structure analyses, ureC1 was related to the ureC typically present in the Rhizobiales; in contrast, the ureC2 encoded in the ure-2 operon is more related to distant species. Conclusion We have for the first time purified and characterized an active urease from B. suis. The enzyme was characterized at the kinetic, immunological and phylogenetic levels. Our results confirm that the active urease of B. suis is a product of ure-1 operon.
- Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analysesSiddaramappa, Shivakumara; Challacombe, Jean F.; Duncan, Alison J.; Gillaspy, Allison F.; Carson, Matthew; Gipson, Jenny; Orvis, Joshua; Zaitshik, Jeremy; Barnes, Gentry; Bruce, David; Chertkov, Olga; Detter, J. Chris; Han, Cliff S.; Tapia, Roxanne; Thompson, Linda S.; Dyer, David W.; Inzana, Thomas J. (2011-11-23)Background Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. Results The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. Conclusions Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.
- Molecular epidemiology of hepatitis E virus infections in Shanghai, ChinaZhu, Yumin; Si, Fusheng; Cao, Dianjun; Yu, Xiaoming; Yu, Ruisong; Dong, Shijuan; Huang, Fenfen; Zhang, Yuanshu; Li, Zhen (2011-12-15)Background Hepatitis E virus (HEV) causes acute or fulminant hepatitis in humans and is an important public health concern in many developing countries. China has a high incidence of HEV epidemics, with at least three genotypes (1, 3 and 4) and nine subtypes (1b, 1c, 3b, 4a, 4b, 4d, 4g, 4h and 4i) so far identified. Since genotype 3 and the newly identified subtype 4i have been exclusively limited geographically to Shanghai and its neighboring provinces, the epidemiology of HEV infections within the municipality, a major industrial and commercial center, deserves closer attention. Findings A total of 65 sequences, 60 located within the HEV SH-SW-zs1 genome [GenBank:EF570133], together with five full-length swine and human HEV genomic sequences, all emanating from Shanghai, were retrieved from GenBank. Consistent with the primary role of genotype 4 in China overall, analysis of the sequences revealed this to have been the dominant genotype (58/65) in Shanghai. Six HEV subtypes (3b, 4a, 4b, 4d, 4h and 4i) were also represented. However, although subtype 4a is the dominant subtype throughout China, subtype 4i (29/65) was the most prevalent subtype among the Shanghai sequences, followed by subtypes 4d (10/65) and 4h (9/65). Subtypes 4h, 4i and 4d were found in both swine and humans, whereas 4b was found only in swine and subtype 4a only in humans. Conclusions Six different swine and human HEV subtypes have so far been documented in Shanghai. More molecular epidemiological investigations of HEV in swine, and particularly among the human population, should be undertaken.