Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Powering Next-Generation Artificial Intelligence by Designing Three-dimensional High-Performance Neuromorphic Computing System with Memristors

    Thumbnail
    View/Open
    An_H_D_2020.pdf (5.139Mb)
    Downloads: 5
    Date
    2020-09-17
    Author
    An, Hongyu
    Metadata
    Show full item record
    Abstract
    Human brains can complete numerous intelligent tasks, such as pattern recognition, reasoning, control and movement, with remarkable energy efficiency (20 W). In contrast, a typical computer only recognizes 1,000 different objects but consumes about 250 W power [1]. This performance significant differences stem from the intrinsic different structures of human brains and digital computers. The latest discoveries in neuroscience indicate the capabilities of human brains are attributed to three unique features: (1) neural network structure; (2) spike-based signal representation; (3) synaptic plasticity and associative memory learning [1, 2]. In this dissertation, the next-generation platform of artificial intelligence is explored by utilizing memristors to design a three-dimensional high-performance neuromorphic computing system. The low-variation memristors (fabricated by Virginia Tech) reduce the learning accuracy of the system significantly through adding heat dissipation layers. Moreover, three emerging neuromorphic architectures are proposed showing a path to realizing the next-generation platform of artificial intelligence with self-learning capability and high energy efficiency. At last, an Associative Memory Learning System is exhibited to reproduce an associative memory learning that remembers and correlates two concurrent events (pronunciation and shape of digits) together.
    General Audience Abstract
    In this dissertation, the next-generation platform of artificial intelligence is explored by utilizing memristors to design a three-dimensional high-performance neuromorphic computing system. The low-variation memristors (fabricated by Virginia Tech) reduce the learning accuracy of the system significantly through adding heat dissipation layers. Moreover, three emerging neuromorphic architectures are proposed showing a path to realizing the next-generation platform of artificial intelligence with self-learning capability and high energy efficiency. At last, an Associative Memory Learning System is exhibited to reproduce an associative memory learning that remembers and correlates two concurrent events (pronunciation and shape of digits) together.
    URI
    http://hdl.handle.net/10919/101838
    Collections
    • Doctoral Dissertations [14857]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us