Proposed in vitro model of neutrophil swarming in a chronic, low-level inflammatory state

TR Number
Date
2019-09-24
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Chronic, low-grade inflammation is an underlying condition across a globally increasing number of debilitating diseases. These diseases include obesity, atherosclerosis, and diabetes and their resultant low-grade inflammation can be effectivity modeled with low dose stimulants such as lipopolysaccharide (LPS). While the innate immunity plays a significant role in fighting infectious disease, an initial exposure to low dose LPS hinders secondary infection clearance and pre-disposes murine models for fatal sepsis. Neutrophils are the most prevalent circulating innate immune cell and their homotypic aggregation, or swarming, is a key mechanism in clearing pathogens greater than 20 μm in size. We hypothesize that neutrophil swarming ability is altered when in a low dose LPS primed state; potentially leading to an overall altered innate immune response in the face of infection. However, an in vitro model does not currently exist to reliably quantify and compare neutrophil swarms across treatment groups. Here we propose a novel model utilizing fungal zymosan coated beads as a uniform target to which neutrophils may swarm.

Description
Keywords
Neutrophil, Neutrophil Swarming, Inflammation, Immunology
Citation
Collections