Synthesis and Characterization of Wholly Aromatic, Water-Soluble Polyimides and Poly(amic acid)s Towards Fire Suppression Foams

TR Number
Date
2021-05-28
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Polyimides epitomize one of the most versatile high-performance engineering polymers. Polyimides are inherently mechanically robust, chemically inert, and thermooxidatively stable to 400+ °C depending on their chemical structure, enabling their function in numerous aerospace, electronic, medical, and flame-retardant applications. Polyimides can be highly modular even within synthetic limitations, which promotes and sustains innovative research. One recent interest concerns the innovation of fire suppression foams. Aqueous film-forming foams (AFFFs) are regularly sought when engaging liquid fuel (gasoline, jet fuel) fires. AFFFs utilize perfluorinated compounds (PFCs) like perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), which exhibit toxicity, bioaccumulation, and persistence in the environment resulting in the presence of fluorosurfactant chemicals in environments either through direct or secondary exposure via chemical migration. Recently, the USEPA has even detected PFAS in drinking water at hundreds of military training facilities and civilian airports. While fluorinated compounds provide desirable thermooxidative stability and excellent fire retardancy, the environmental impact imposed by these chemicals strongly encourages research that targets the complete removal of PFCs in conventional formulations. This thesis focuses on the fundamental development of water-soluble sulfonated polyimide (sPI) and poly(amic acid) (sPAA) systems for next-generation polymer-based fire suppression foams. The use of sulfonated monomers and poly(amic acid) salt formation enables tunable structures and water solubilities. The polymers maintain competitive thermal stabilities to conventional polyimides and, when combined with readily available, non-toxic surfactants (SDS), produce stable foams. The MIL-F-24385F performance requirement evaluates foam quality/stability, drainage time, and burnback resistance to access viability and provides comparison to other systems; preliminary testing shows that sPI/sPAA formulations perform well. Solution rheology offers insights into fundamental scaling relationships of specific viscosity vs. concentration in both salt and salt-free solution that are important to future foam development. Additionally, the structural nature of the sPIs/ sPAAs allows for their modification with phosphonium moieties or siloxanes, which are slated to have positive effects on performance. Overall, these sPIs and sPAAs provide a promising platform for the future direction of fire suppression foams.

Description
Keywords
polyimide, poly(amic acid), AFFF, fire suppression, phosphonium, siloxane, rheology, aqueous foam, high-performance
Citation
Collections