Joint Angle Estimation Method for Wearable Human Motion Capture

TR Number

Date

2021-05-27

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This thesis presents a method for estimating the positions of human limbs during motion that can be applied to wearable, textile-based sensors. The method was validated for the elbow and shoulder joints with data from two garments with resistive, thread-based sensors sewn into the garments at multiple locations. The proposed method was able to estimate the elbow joint position with an average error of 2.2 degrees. The method also produced an average difference in Euclidean distance of 3.7 degrees for the estimated shoulder joint position using data from nine sensors placed around the subject's shoulder. The most accurate combination of sensors on the shoulder garment was found to produce an average difference in distance of 3.4 degrees and used only six sensors. The characteristics of the resistive, thread-based sensor used to validate the method are also detailed as some of their behaviors proved to affect the accuracy of the method negatively.

Description

Keywords

Motion Capture, Textile Sensors, Joint Angle Estimation, Wearable Technology

Citation

Collections