Deceleration Stage Rayleigh-Taylor Instability Growth in Inertial Confinement Fusion Relevant Configurations
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Experimental results and simulations of imploding fusion concepts have identified the Rayleigh-Taylor (RT) instability as one of the largest inhibitors to achieving fusion. Understanding the origin and development of the RT instability will allow for the development of mitigating measures to dampen the instability growth, thus improving the chance that fusion concepts such as inertial confinement fusion (ICF) are successful. A study of 1D and 2D simulations are presented for investigating RT instability growth in deceleration stage of imploding geometries. Two cases of laser-driven implosion geometry, Cartesian and cylindrical, are used to study late stage deceleration-phase RT instability development on the interior surface of imploding targets. FLASH's hydrodynamic (HD) and magnetohydrodynamic (MHD) modeling capabilities are used for different laser and target parameters in order to study the RT instability and the impact of externally applied magnetic fields on their evolution. Several simulation regimes have been identified that provide novel insight into the impact that a seeded magnetic field can have on RT instability growth and the conditions under which magnetic field stabilization of the RT instability is observable. Finally, future work and recommendations are made.