Adversarial Learning based framework for Anomaly Detection in the context of Unmanned Aerial Systems

TR Number
Date
2020-06-18
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Anomaly detection aims to identify the data samples that do not conform to a known normal (regular) behavior. As the definition of an anomaly is often ambiguous, unsupervised and semi-supervised deep learning (DL) algorithms that primarily use unlabeled datasets to model normal (regular) behaviors, are popularly studied in this context. The unmanned aerial system (UAS) can use contextual anomaly detection algorithms to identify interesting objects of concern in applications like search and rescue, disaster management, public security etc. This thesis presents a novel multi-stage framework that supports detection of frames with unknown anomalies, localization of anomalies in the detected frames, and validation of detected frames for incremental semi-supervised learning, with the help of a human operator. The proposed architecture is tested on two new datasets collected for a UAV-based system. In order to detect and localize anomalies, it is important to both model the normal data distribution accurately as well as formulate powerful discriminant (anomaly scoring) techniques. We implement a generative adversarial network (GAN)-based anomaly detection architecture to study the effect of loss terms and regularization on the modeling of normal (regular) data and arrive at the most effective anomaly scoring method for the given application. Following this, we use incremental semi-supervised learning techniques that utilize a small set of labeled data (obtained through validation from a human operator), with large unlabeled datasets to improve the knowledge-base of the anomaly detection system.

Description
Keywords
Moving camera, Anomaly Detection, Adversarial Learning, Unmanned Aerial Systems (UAS)
Citation
Collections