North American Tree Bat (Genera: Lasiurus, Lasionycteris) Migration on the Mid-Atlantic Coast—Implications and Discussion for Current and Future Offshore Wind Development

TR Number
Date
2022-01-18
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

In eastern North America, "tree bats" (Genera: Lasiurus and Lasionycteris) are highly susceptible to collisions with wind energy turbines and are known to fly offshore during migration. This raises concern about ongoing expansion of offshore wind-energy development off the Atlantic Coast. Season, atmospheric conditions, and site-level characteristics such as local habitat features (e.g., forest coverage) have been shown to influence wind turbine collision rates by bats onshore, and similar features may be related to risk offshore. In response to rapidly developing offshore wind energy development, I assessed the factors affecting coastal and offshore presence of tree bats. I continuously gathered tree bat nightly occurrence data using stationary acoustic recorders on five structures (four lighthouses on barrier islands and one light tower offshore) off the coast of Virginia, USA, across all seasons, 2012–2019. I used generalized additive models to describe nightly tree bat occurrence in relation to multiple factors. I found that sites either indicated maternity or migratory patterns in their seasonal occurrence pattern that were associated with local roosting resources (i.e., presence of forest). Across all sites, nightly occurrence was negatively related to wind speed and positively related to temperature and visibility. Using predictive performance metrics, I concluded that the model was highly predictive for the Virginia coast. My findings were consistent with other studies—tree bat occurrence probability and presumed mortality risk to offshore wind-energy collisions is highest on nights with low wind speed, high temperature and visibility during spring and fall. The high predictive model performance I observed provides a basis for which managers, using a similar monitoring and modeling regime, could develop an effective curtailment-based mitigation strategy.

Although information at fixed points is helpful for managing specific sites, large questions remain on certain aspects of tree bat migration, in part because direct evidence (i.e., tracking of individuals) has been difficult to obtain so far. For instance, patterns in fall behavior such as the timing of migration events, the existence of migratory pathways, consistencies in the direction of travel, the drivers of over-water flight, and the activity states of residents (or bats in stopover) remain unstudied in the mid-Atlantic. The recently established Motus Wildlife Tracking System, an array of ground-based receiver stations, provides a new technique to track individual bats via the ability to detect course-scale movement paths of attached very high frequency radio-tags. To reveal patterns in migration, and to understand drivers of over-water flight, I captured and radio-tagged 115 eastern red bats (Lasiurus borealis) and subsequently tracked their movements. For the bats with evidence of large movements, most traveled in a southwesterly direction whereby paths were often oriented interior toward the continental landmass rather than being oriented along the coastline. This observation challenges earlier held beliefs that bats closely follow linear landscape features, such as the coast, when migrating. I documented bats traveling across wide sections of the Chesapeake and Delaware bays confirming the species' ability to travel across large water bodies. This behavior typically occurred in the early hours of the night and during favorable flying conditions such as low wind speeds, warm temperatures, and/or during sudden increases in temperature associated with the passage of cold fronts. For bats engaging in site residency through the fall, the proportion of night-hours in which bats were in a resting state (and possibly torpor), increased with colder temperatures and the progression of the fall season. My study demonstrated that bats may be at risk to offshore wind turbine collisions off the mid-Atlantic, but that this risk might be minimal if most bats are migrating toward the interior landscape rather than following the coast. Nonetheless, if flight over large water bodies such as Chesapeake and Delaware bays is a viable proxy for over-ocean flight, then collision risk at offshore wind turbines may be somewhat linked to atmospheric, seasonal timing, or other effects, and therefore some level of predictable and manageable with mitigations options such as smart curtailment.

Description
Keywords
acoustics, atmospheric conditions, curtailment, Lasionycteris, Lasiurus, Migration, Motus Wildlife Tracking System, Motus, movement, nanotag, occurrence, tree bat, VHF antenna, wind turbine collisions
Citation
Collections