Thermophysical properties of glass and glass-ceramic composites

TR Number
Date
1987
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Polytechnic Institute and State University
Abstract

The thermal diffusivity and conductivity of several ceramic composites were determined experimentally to observe the effect of temperature, heat treatment and orientation on these properties.

The thermal conductivity and diffusivity of SiC whisker reinforced Ba-osumilite glass-ceramic exceeded that of SiC fiber reinforced osumilite due to higher thermal conductivity and diffusivity of the whiskers. An anisotropy was observed in thermal conductivity of the whisker composite due to whisker orientation normal to hot-pressing direction.

Thermal conductivity of carbon fiber reinforced borosilicate glass parallel to the fiber plane was about twice that of the normal orientation and of the matrix. Heating the composite to above 600°C resulted in permanent decrease in thermal conductivity due to void formation by relaxation of the elastically bent fibers by viscous flow of the matrix.

Thermal conductivity of iniaxial carbon fiber reinforced lithia-aluminosilicate glass-ceramic was over ten times higher parallel to the fibers than perpendicular. Permanent decrease of thermal conductivity normal to the fibers was due to matrix cracking caused by relief of internal stresses due to matrix crystallization and thermal gradients during fabrication.

Modification of the original theories of Maxwell and Rayleigh permitted derivation of expressions for thermal conductivity of composites of a continuous matrix with dilute concentrations of spherical and cylindrical geometries and of parallel flat plates with thermal resistance at the interfaces.

Description
Keywords
Citation
Collections