Comparing Relative Convenience of Non-Commute Trips in Battery Electric Vehicles Versus Internal Combustion Engine Vehicles in the Contiguous United States

TR Number
Date
2021-05-26
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Technological advancements in battery electric vehicles (BEVs) have developed alongside increases in vehicle size and the introduction of vehicle styling more similar to internal combustion engine vehicles (ICEVs). Increases in the distance a BEV can travel on a single charge have been accompanied by the ability to recharge the vehicle much faster than the BEV models available just 10 years ago. The Environmental Protection Agency (EPA) reports for model year 2021 include 40 BEV models and many manufacturers have signaled plans to increase the number of battery electric vehicle models offered. As more consumers consider purchasing a battery electric vehicle the question of how well that vehicle can meet all their needs is asked more frequently.

This research examines the current DC-Fast charging infrastructure to evaluate how the current distribution of chargers impacts consumer convenience for non-commute routes. No study has evaluated the impact that the current DC-Fast charging infrastructure has on the consumer driving experience and we fill this research need because it will allow consumers to understand more accurately how a (BEV) may meet their needs while also allowing BEV manufacturers to better understand the impacts of potential investments in charging infrastructure. The authors examine over 30,000 pairs of simulated BEV and ICEV routes and compare the distance and duration variations for each pair. Due to our effort to consider the suitability for long distance trips, we have ensured that more than 50% of the simulated routes have a minimum travel distance of 500 miles and over 15% of the routes exceed 1000 miles. Working from this data, 99.7% of the locations in a sample of 360 places in the contiguous U.S. can be reached without relying on the ability to charge a BEV overnight. We further identify a median increase in BEV trip duration of 13.1% and a median increase in distance of 0.06%. The differences in median travel time, particularly when trips exceed 400 miles suggests that long trips made with a BEV may result in longer total travel time, however, differences in route length between BEVs and ICEVs were minimal.

These findings serve as the foundation to discuss challenges and solutions related to widespread non-commuter adoption of BEVs in a variety of geographic locations, including how and where the consumer experience may vary. The results from this work will support consumer awareness about the ability of a BEV to meet their needs as well to aid in the evaluation of infrastructure investment as it relates to improving the consumer experience. The methods employed serve as a foundation for future work to investigate the relationship between vehicle type and consumer experience as well as to advance algorithms capable of evaluating routes that require a selection to be made from a set of optional stops.

Description
Keywords
Vehicle charging, Consumer convenience, Electric vehicles, Network analysis, Transportation geography
Citation
Collections