Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a Self-Calibrating MEMS Pressure Sensor Using a Liquid-to-Vapor Phase Change

    Thumbnail
    View/Open
    Mouring_SW_T_2021.pdf (1.030Mb)
    Downloads: 14
    Date
    2021-08-16
    Author
    Mouring, Scott William
    Metadata
    Show full item record
    Abstract
    A growing industry demand for smart pressure sensors that can be quickly calibrated to compensate for sensor drift, nonlinearity effects, and hysteresis without the need for expensive equipment has led to the development of a self-calibrating pressure sensor. Pressure sensor inaccuracies are often resolved with sensor calibration, which typically requires the use of laboratory equipment that can produce a known, standard pressure to actuate the sensor. The developed MEMS-based, self-calibrating pressure sensor is a piezoresistive-type sensor with a sensing element made from a silicon on insulator (SOI) wafer using deep reactive-ion etching to create a hollow reference cavity. Using a micro-heater to heat the small, air-filled reference cavity of the sensing element, a standard pressure is generated to actuate the sensor's pressure-sensitive membrane, creating a self-calibration effect. Previous work focused on modeling and improving the thermal performance of the sensor identified potential solutions to extend the sensor's calibration and operating range without increasing the micro-heater's power consumption. This report focuses on using a water liquid-to-vapor phase change inside the sensor's reference cavity to increase the sensor's effective range and response time without increasing power demands. A combination of Ansys Fluent CFD modeling and benchtop experiments were used to guide the development of the two-phase, self-calibrating pressure sensor. A two-phase benchtop testing rig was built to demonstrate the anticipated effects of a liquid-to-vapor phase change in a closed domain and to provide experimental data to anchor CFD models. Due to the complexity of modeling a phase-change within a closed domain with Ansys Fluent R21.1, the CFD modeling was performed in two stages. First, the two-phase benchtop rig was modeled, and validated using benchtop test data to verify the Volume of Fluid multiphase model setup in Ansys Fluent. Then, a 2D Ansys Fluent model of the self-calibrating pressure sensor's reference cavity using the validated multiphase model was made, demonstrating the potential temperature, pressure, and density gradients inside the reference cavity at steady state. Using the guidance from the benchtop testing and CFD modeling, a prototype two-phase, self-calibrating pressure sensor was fabricated with a water volume fraction of at least 0.1 in the reference cavity. Testing the prototype two-phase sensor showed that the addition of a water liquid-to-vapor phase change inside the sensor's reference cavity can nearly triple the sensor's effective range of operation and self-calibration without increasing the power consumption of the cavity micro-heater.
    General Audience Abstract
    Highly sensitive pressure sensors are essential to many modern engineering applications. For a pressure sensor to be accurate and functional, it must be properly calibrated with a known, standard pressure range that overlaps with the sensor's intended operating range. Mechanical wear, material aging, and thermal effects all reduce a pressure sensor's accuracy over time, requiring recalibration which often involves expensive equipment and long downtimes. To eliminate the need for additional equipment and the removal of the pressure sensor from its use-site for calibration, the authors have developed a pressure sensor capable of self-calibration. The self-calibrating sensor uses a MEMS sensing element with an integrated micro-actuator in the form of a small heating element to create the standard pressure range necessary for calibration. Previous work focused on modeling the thermal performance of the sensor identified potential solutions to extend the sensor's calibration and operating range without increasing the micro-heater's power consumption. This report focuses on using a water liquid-to-vapor phase change inside the sensor's reference cavity to increase the sensor's effective range and response time without increasing power demands. To help guide the development of the two-phase, self-calibrating sensor, a benchtop testing rig and CFD model were used to examine the effects of heating a liquid inside of a closed domain. A 2D CFD model of the sensor's reference cavity was also used to provide insight into the expected temperature and pressure gradients inside the sensing element after heating with the micro-actuator. Using the guidance from the CFD models, a prototype two-phase, self-calibrating pressure sensor was fabricated. Testing the prototype two-phase sensor showed that the addition of a water liquid-to-vapor phase change inside the sensor's reference cavity can nearly triple the sensor's effective range of operation and self-calibration without increasing the power consumption of the cavity micro-heater.
    URI
    http://hdl.handle.net/10919/113717
    Collections
    • Masters Theses [21609]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us