Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dispersive Characteristics of Left Ventricle Filling Waves

    Thumbnail
    View/Open
    Niebel_CL_T_2013.pdf (3.436Mb)
    Downloads: 607
    Date
    2013-01-07
    Author
    Niebel, Casandra L.
    Metadata
    Show full item record
    Abstract
    Left ventricular diastolic dysfunction (LVDD) is any abnormality in the filling of the left ventricle (LV).  Despite the prevalence of this disease, it remains difficult to diagnose, mainly due to inherent compensatory mechanisms and a limited physical understanding of the filling process.  LV filling can be non-invasively imaged using color m-mode echocardiography which provides a spatio-temporal map of inflow velocity.  These filling patterns, or waves, are conventionally used to qualitatively assess the filling pattern, however, this work aims to physically quantify the filling waves to improve understanding of diastole and develop robust, reliable, and quantitative parameters. This work reveals that LV filling waves in a normal ventricle act as dispersive waves and not only propagate along the length of the LV but also spread and disperse in the direction of the apex.  In certain diseased ventricles, this dispersion is limited due to changes in LV geometry and wall motion.  This improved understanding could aid LVDD diagnostics not only for determining health and disease, but also for distinguishing between progressing disease states. This work also identifies a limitation in a current LVDD parameter, intra ventricular pressure difference (IVPD), and presents a new methodology to address this limitation.  This methodology is also capable of synthesizing velocity information from a series of heartbeats to generating one representative heartbeat, addressing inaccuracies due to beat-to-beat variations.  This single beat gives a comprehensive picture of that specific patient's filling pattern.  Together, these methods improve the clinical utility of IVPD, making it more robust and limiting the chance for a misdiagnosis.
    URI
    http://hdl.handle.net/10919/19249
    Collections
    • Masters Theses [21544]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us