Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and Teleoperative Control of Humanoid Robot Upper Body for Task-driven Assistance

    Thumbnail
    View/Open
    Stevens_MA_T_2013.pdf (4.335Mb)
    Downloads: 3882
    Supporting documents (182.0Kb)
    Downloads: 360
    Date
    2013-05-28
    Author
    Stevens, Michael Alexander
    Metadata
    Show full item record
    Abstract
    Both civilian and defense industry rely heavily on robotics which continues to gain a more prominent role. To exemplify, defense strategies in Middle East have relied upon robotic drones and teleoperative assistant robots for mission oriented tasks. These operations have been crucial in saving the lives of soldiers and giving us the edge in mitigating disasters. Future assistive robotics will have direct human interaction and will reside in normal human environments. As the advancement in technology continues to occur, there will be a focus towards eliminating the direct human control and replacing it with higher level autonomy. Further, advancements in electronics and electromechanical components will reduce the cost and makes the assistive robotics accessible to the masses. This thesis focuses on robotic teleoperation technology and the future high level control of assistant robotics. A dexterous 16 degree of freedom hand with bend sensors for precise joint positions was designed, modeled, fabricated and characterized. The design features a unique motor actuation mechanism that was 3D printed to reduce the cost and increase the modularity. The upper body was designed to be biomimetic with dimensions similar to that of a typical six foot tall male. The upper body of the humanoid consists of a 4 degree of freedom shoulder and upper arm with direct feedback at each joint. A theoretical nonlinear switching controller was designed to control these 4 degrees of freedom. The entire system was teleoperative controlled with an Xbox Kinect that tracks the skeletal points of a user and emulates these 3D points to the joints of humanoid upper body. This allows for a direct user control over a robotic assistive upper body with nothing more than a human emulating the desired movements.
    URI
    http://hdl.handle.net/10919/23108
    Collections
    • Masters Theses [19418]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us