Evaluating the Effect of Decking Fasteners on the Seismic Behavior of Steel Moment Frame Plastic Hinge Regions

TR Number
Date
2013-06-06
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

A series of full-scale beam-to-column moment connection tests were completed to determine the effects of powder actuated fasteners (PAF) and puddle welds on the seismic behavior of steel moment connections.  In seismic regions, PAF are currently prohibited in the connection region (referred to as the protected zone) due to the concern of low-cycle fatigue fracture.  There is almost no information available in the literature regarding the seismic behavior of moment connections with PAF or puddle welds.

Full-scale connection testing is the most accurate way to investigate the behavior of different moment connections with common defects and fasteners applied in the protected zone.  However, it is cost prohibitive to conduct full-scale testing programs that are sufficiently comprehensive to investigate a wide range of defect types, severity, and locations.  For this reason, it is desired to develop alternative methods of investigation.  A finite element (FE) model capable of simulating both the global deformation patterns and local buckling effects in a moment connection has been developed.  Validated FE models will allow for further evaluation through numerical simulation of additional configurations.  Furthermore, alternate, more economical, test configurations to experimentally investigate the effect of defects on steel moment connections were explored.  This report discusses the full-scale test setup, results and analysis of completed experimental testing, the development of an FE connection model, and the preliminary development of alternate test configurations.

Description
Keywords
Finite Element Modeling, Low-cycle Fatigue, Seismic Behavior, Steel Moment Resisting Frames, Full-Scale Testing
Citation
Collections