Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Science (COS)
    • Department of Physics
    • Scholarly Works, Department of Physics
    • View Item
    •   VTechWorks Home
    • College of Science (COS)
    • Department of Physics
    • Scholarly Works, Department of Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Infrared studies of hole-plasmon excitations in heavily-doped p-type MBE-grown GaAs : C

    Thumbnail
    View/Open
    Main article (276.5Kb)
    Downloads: 258
    Date
    2000-08-15
    Author
    Songprakob, W.
    Zallen, Richard H.
    Liu, W. K.
    Bacher, K. L.
    Metadata
    Show full item record
    Abstract
    Infrared reflectivity measurements (200-5000 cm(-1)) and transmittance measurements (500-5000 cm(-1)) have been carried out on heavily-doped GaAs:C films grown by molecular-beam epitaxy. With increasing carbon concentration, a broad reflectivity minimum develops in the 1000-3000 cm(-1) region and the one-phonon band near 270 cm(-1) rides on a progressively increasing high-reflectivity background, An effective; plasmon/one-phonon dielectric function with only two free parameters (plasma frequency omega(p) and damping constant gamma) gives a good description of the main features of both the reflectivity and transmittance spectra. The dependence of omega(p)(2) on hole concentration p is linear; at p = 1.4 x 10(20) cm(-3), omega(p) is 2150 cm(-1). At each doping, the damping constant gamma is large and corresponds to an infrared hole mobility that is about half the Hall mobility. Secondary-ion mass spectroscopy and localized-vibrational-mode measurements indicate that the Hall-derived p is close to the carbon concentration and that the Hall factor is dose to unity, so that the Hall mobility provides a good estimate of actual de mobility. The observed dichotomy between the de and infrared mobilities is real, not a statistical-averaging artifact. The explanation of the small infrared mobility resides in the influence of intervalence-band absorption on the effective-plasmon damping, which operationally determines that mobility. This is revealed by a comparison of the infrared absorption results to Braunstein's low-p p-GaAs spectra and to a k.p calculation extending Kane's theory to our high dopings. For n-GaAs, which lacks infrared interband absorption, the de and infrared mobilities do not differ.
    URI
    http://hdl.handle.net/10919/25382
    Collections
    • Scholarly Works, Department of Physics [811]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us