Show simple item record

dc.contributor.authorRoinestad, Kristine A.en
dc.date.accessioned2014-03-14T20:09:42Zen
dc.date.available2014-03-14T20:09:42Zen
dc.date.issued2010-04-12en
dc.identifier.otheretd-04152010-113009en
dc.identifier.urihttp://hdl.handle.net/10919/26883en
dc.description.abstractThis paper will examine analogues of Cantor sets, called fractal squares, and some of the geometric ways in which fractal squares raise issues not raised by Cantor sets. Also discussed will be a technique using directed graphs to prove bilipschitz equivalence of two fractal squares.en
dc.publisherVirginia Techen
dc.relation.haspartRoinestad_KA_D_2010.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectSelf-Similarityen
dc.subjectBilipschitz Equivalencesen
dc.subjectFractal Squaresen
dc.subjectCantor Setsen
dc.titleGeometry of Fractal Squaresen
dc.typeDissertationen
dc.contributor.departmentMathematicsen
dc.description.degreePh. D.en
thesis.degree.namePh. D.en
thesis.degree.leveldoctoralen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.disciplineMathematicsen
dc.contributor.committeechairHaskell, Peter E.en
dc.contributor.committeememberRossi, John F.en
dc.contributor.committeememberDay, Martin V.en
dc.contributor.committeememberThomson, James E.en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-04152010-113009/en
dc.date.sdate2010-04-15en
dc.date.rdate2010-04-29en
dc.date.adate2010-04-29en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record